將拋物線y=x2+1先向左平移2個單位,再向下平移3個單位,那么所得拋物線的函數(shù)關(guān)系式是


  1. A.
    y=(x+2)2+2
  2. B.
    y=(x+2)2-2
  3. C.
    y=(x-2)2+2
  4. D.
    y=(x-2)2-2
B
二次函數(shù)圖象與平移變換。
【分析】直接根據(jù)“上加下減,左加右減”的原則進(jìn)行解答:
將拋物線y=x2+1先向左平移2個單位所得拋物線的函數(shù)關(guān)系式是:y=(x+2)2+1;
將拋物線y=(x+2)2+1先向下平移3個單位所得拋物線的函數(shù)關(guān)系式是:y=(x+2)2+1-3,即y=(x+2)2-2。故選B。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:浙江省中考真題 題型:解答題

在直角坐標(biāo)系中,點(diǎn)A是拋物線yx2在第二象限上的點(diǎn),連接OA,過點(diǎn)O作OB⊥OA,交拋物線于點(diǎn)B,以O(shè)A、OB為邊構(gòu)造矩形AOBC.
(1)如圖1,當(dāng)點(diǎn)A的橫坐標(biāo)為       時(shí),矩形AOBC是正方形;
(2)如圖2,當(dāng)點(diǎn)A的橫坐標(biāo)為時(shí),
①求點(diǎn)B的坐標(biāo);
②將拋物線yx2作關(guān)于x軸的軸對稱變換得到拋物線y=﹣x2,試判斷拋物線y=﹣x2經(jīng)過平移交換后,能否經(jīng)過A,B,C三點(diǎn)?如果可以,說出變換的過程;如果不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆湖南省臨武縣楚江中學(xué)九年級二次函數(shù)測試數(shù)學(xué)試卷(帶解析) 題型:解答題

二次函數(shù)y=x2x的圖象經(jīng)過△AOB的三個頂點(diǎn),其中A(-1,m),B(n,n).
【小題1】求點(diǎn)A、B的坐標(biāo)
【小題2】在坐標(biāo)平面上找點(diǎn)C,使以A、O、B、C為頂點(diǎn)的四邊形是平行四邊形.
①這樣的點(diǎn)C有幾個?
②能否將拋物線y=x2x平移后經(jīng)過A、C兩點(diǎn)?若能,求出平移后經(jīng)過A、C兩點(diǎn)的一條拋物線的解析式;若不能,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(浙江麗水卷)數(shù)學(xué)(帶解析) 題型:解答題

在直角坐標(biāo)系中,點(diǎn)A是拋物線y=x2在第二象限上的點(diǎn),連接OA,過點(diǎn)O作OB⊥OA,交拋物線于點(diǎn)B,以O(shè)A、OB為邊構(gòu)造矩形AOBC.

(1)如圖1,當(dāng)點(diǎn)A的橫坐標(biāo)為    時(shí),矩形AOBC是正方形;
(2)如圖2,當(dāng)點(diǎn)A的橫坐標(biāo)為時(shí),
①求點(diǎn)B的坐標(biāo);
②將拋物線y=x2作關(guān)于x軸的軸對稱變換得到拋物線y=-x2,試判斷拋物線y=-x2經(jīng)過平移交換后,能否經(jīng)過A,B,C三點(diǎn)?如果可以,說出變換的過程;如果不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年四川省成都市高新區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

將拋物線y=x2+1先向左平移2個單位,再向下平移3個單位,那么所得拋物線的函數(shù)關(guān)系式是(  )

A.y=(x+2)2+2     B.y=(x+2)2-2

C.y=(x-2)2+2     D.y=(x-2)2-2

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧地區(qū)九年級第一學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

將拋物線y=x2向左平移1個單位,再向下平移2個單位,得到拋物線的解析式為

A.y=x2-2x-1                          B.y=-x2+2x-1

C.y=x2+2x-1                          D.y=-x2+4x+1

 

查看答案和解析>>

同步練習(xí)冊答案