【題目】俄羅斯世界杯足球賽期間,某商店銷售一批足球紀念冊,每本進價40元,規(guī)定銷售單價不低于44元,且獲利不高于30%.試銷售期間發(fā)現(xiàn),當銷售單價定為44元時,每天可售出300本,銷售單價每上漲1元,每天銷售量減少10本,現(xiàn)商店決定提價銷售.設每天銷售量為y本,銷售單價為x元.

(1)請直接寫出yx之間的函數(shù)關系式和自變量x的取值范圍;

(2)將足球紀念冊銷售單價定為多少元時,商店每天銷售紀念冊獲得的利潤w元最大?最大利潤是多少元?

【答案】(1)y=-10x+740(44x52);(2)紀念冊銷售單價定為52元時,獲得最大利潤2640元.

【解析】

(1)設y=kx+b,根據(jù)題意,用待定系數(shù)法確定出yx的函數(shù)關系式即可;(2)根據(jù)“銷量×每本的利潤=w”列出二次函數(shù)解析式,進而利用二次函數(shù)的性質(zhì)求解即可.

(1)

(2)

時,的增大而增大,

,所以當時,有最大值,最大值為2640,

答:將足球紀念冊銷售單價定為52元時,商店每天銷售紀念冊獲得的利潤元最大,最大利潤2640元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線與直線交于點,已知點的橫坐標為-5,直線軸交于點,與軸交于點,直線軸交于點.

1)求直線的解析式;

2)將直線向上平移6個單位得到直線,直線軸交于點,過點軸的垂線,若點為垂線上的一個動點,點軸上的一個動點,當的值最小時,求此時點的坐標及的最小值;

3)已知點、分別是直線、上的兩個動點,連接、、,是否存在點、,使得是以點為直角頂點的等腰直角三角形,若存在,求點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)李飛與劉亮射擊訓練的成績繪制了如圖所示的折線統(tǒng)計圖.

根據(jù)圖所提供的信息,若要推薦一位成績較穩(wěn)定的選手去參賽,應推薦(  )

A. 李飛或劉亮 B. 李飛 C. 劉亮 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,的三個頂點分別為,,

向上平移個單位后得到,請畫出

已知點與點關于直線成軸對稱,請畫出直線關于直線對稱的.

軸上存在一點,滿足點到點與點距離之和最小,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣舉辦老、中、青三個年齡段五公里競走活動,其人數(shù)比為,如圖所示的扇形統(tǒng)計圖表示 上述分布情況,已知老人有人,則下列說法不正確的是( )

A. 老年所占區(qū)域的圓心角是B. 參加活動的總?cè)藬?shù)是

C. 中年人比老年人多D. 老年人比青年人少

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解初中學生每天在校體育活動的時間(單位:h),隨機調(diào)査了該校的部分初中學生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:

(Ⅰ)本次接受調(diào)查的初中學生人數(shù)為___________,圖①中m的值為_____________;

(Ⅱ)求統(tǒng)計的這組每天在校體育活動時間數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)統(tǒng)計的這組每天在校體育活動時間的樣本數(shù)據(jù),若該校共有800名初中學生,估計該校每天在校體育活動時間大于1h的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖示,若ABC內(nèi)一點P滿足PAC=PBA=PCB,則點P為ABC的布洛卡點.三角形的布洛卡點(Brocard point)是法國數(shù)學家和數(shù)學教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當時的人們所注意,1875年,布洛卡點被一個數(shù)學愛好者法國軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,EDF=90°,若點Q為DEF的布洛卡點,DQ=1,則EQ+FQ=(

A.5 B.4 C.3+ D.2+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,△ABC的位置如圖所示,直線l經(jīng)過點(01),并且與x軸平行,△A1B1C1與△ABC關于直線l對稱.

1)畫出三角形A1B1C1

2)若點Pm,n)在AC邊上,則點P關于直線l的對稱點P1的坐標為   ;

3)在直線l上畫出點Q,使得QA+QC的值最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點,正比例函數(shù)的圖象l2l1交于點C(m,4).

(1)求m的值及l2的解析式;

(2)求SAOC﹣SBOC的值;

(3)一次函數(shù)y=kx+1的圖象為l3,且11,l2,l3不能圍成三角形,直接寫出k的值.

查看答案和解析>>

同步練習冊答案