已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A(-3,6),并且與x軸交于點B(-1,0)和點C,頂點為P.
(1)求這個二次函數(shù)解析式;
(2)設(shè)D為線段OC上的點,滿足∠DPC=∠BAC,求點D的坐標(biāo).
【答案】分析:(1)將A、B的坐標(biāo)代入拋物線中,即可求出二次函數(shù)的解析式.
(2)先求得P、C兩點坐標(biāo),然后通過證△BAC和△PCD來求出CD的長,即可得出D點的坐標(biāo).
解答:解:(1)已知拋物線過A(-3,6),B(-1,0)則有:

解得
∴二次函數(shù)的解析式為:y=x2-x-;

(2)易知:P(1,-2),C(3,0),
過P作PM⊥x軸于M,
則PM=2,
∵拋物線過C(3,0)和B(-1,0),
∴BC=4,CM=2=PM,
∴∠PCO=45°
同理可求得∠ACB=45°,
∵∠DPC=∠BAC,∠PCO=∠ACB=45°,
∴△DPC∽△BAC,

易求AC=6,PC=2,BC=4
∴CD=,OD=3-=
∴D(,0).
點評:本題考查了二次函數(shù)解析式的確定、相似三角形的判定和性質(zhì)等知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、已知二次函數(shù)y=x2+mx+m-5,
(1)求證:不論m取何值時,拋物線總與x軸有兩個交點;
(2)求當(dāng)m取何值時,拋物線與x軸兩交點之間的距離最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2+(2a+1)x+a2-1的最小值為0,則a的值是( 。
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)y=-x2+2x+m的部分圖象如圖所示,則關(guān)于x的一元二次方程-x2+2x+m=0的解為( 。
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、已知二次函數(shù)y1=x2-x-2和一次函數(shù)y2=x+1的兩個交點分別為A(-1,0),B(3,4),當(dāng)y1>y2時,自變量x的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,它與x軸的一個交點坐標(biāo)為(-1,0),與y軸的交點坐標(biāo)為(0,3).
(1)試求二次函數(shù)的解析式;
(2)求y的最大值;
(3)寫出當(dāng)y>0時,x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案