【題目】如圖,AC是某市環(huán)城路的一段,AE,BF,CD都是南北方向的街道,其與環(huán)城路AC的交叉路口分別是A,B,C.經(jīng)測(cè)量花卉世界D位于點(diǎn)A的北偏東45°方向,點(diǎn)B的北偏東30°方向上,AB=2km,∠DAC=15°.
(1)求B,D之間的距離;
(2)求C,D之間的距離.
【答案】(1)BD之間的距離為2km;(2)C,D之間的距離km.
【解析】分析:(1)根據(jù)平行線(xiàn)的性質(zhì),以及方向角的定義即可求出根據(jù)等角對(duì)等邊,即可證得即可求解;
(2)根據(jù)等角對(duì)等邊即可證得 然后根據(jù)三角函數(shù)即可求得的長(zhǎng).
詳解:(1)如圖,由題意得,
∴
∵AE∥BF∥CD,
∴
∵
∴
又∵
∴ .
∴
∴為等腰三角形,
∴
即BD之間的距離為2km.
(2)過(guò)B作,交其延長(zhǎng)線(xiàn)于點(diǎn)O,
在中,
∴
在中,
∴(km).
即C,D之間的距離km.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E在正方形ABCD的對(duì)角線(xiàn)AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點(diǎn)M、N.若正方形ABCD的邊長(zhǎng)為6,則重疊部分四邊形EMCN的面積為( )
A. 9B. 12C. 16D. 32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究,過(guò)程如下,請(qǐng)補(bǔ)充完整.
(1)自變量的取值范圍是全體實(shí)數(shù),與的幾組對(duì)應(yīng)值列表如下:
… | 0 | 1 | 2 | 3 | 4 | 5 | … | ||||
… | 4 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | … |
其中,__________.
(2)根據(jù)上表的數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫(huà)出了函數(shù)圖象的一部分,請(qǐng)畫(huà)出該函數(shù)圖象的另一部分.
(3)觀(guān)察圖象,寫(xiě)出該函數(shù)的兩條性質(zhì):
①____________________________________________________________
②____________________________________________________________
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①方程的解是__________.
②方程的解是__________.
③關(guān)于的方程有兩個(gè)不相等實(shí)數(shù)根,則的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將菱形紙片ABCD折疊,使點(diǎn)A恰好落在菱形的對(duì)稱(chēng)中心O處,折痕為EF,若菱形ABCD的邊長(zhǎng)為2cm,∠A=120°,則EF的長(zhǎng)為( )
A. 2 B. 2 C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)在一次愛(ài)心捐款活動(dòng)中,全體同學(xué)積極踴躍捐款.現(xiàn)抽查了九年級(jí)(1)班全班同學(xué)捐款情況,并繪制出如下的統(tǒng)計(jì)表和統(tǒng)計(jì)圖:
捐款(元) | 20 | 50 | 100 | 150 | 200 |
人數(shù)(人) | 4 | 12 | 9 | 3 | 2 |
求:(Ⅰ)m=_____,n=_____;
(Ⅱ)求學(xué)生捐款數(shù)目的眾數(shù)、中位數(shù)和平均數(shù);
(Ⅲ)若該校有學(xué)生2500人,估計(jì)該校學(xué)生共捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)長(zhǎng)方形地面.請(qǐng)觀(guān)察各圖形并解答有關(guān)問(wèn)題:
(1)在第個(gè)圖形中,每一橫行共有 塊瓷磚,每一豎列共有 塊瓷磚(均用含的代數(shù)式表示);
(2)設(shè)鋪設(shè)地面所用瓷磚的總塊數(shù)為,用(1)中的表示;
(3)當(dāng)=20時(shí),求的值;
(4)若黑瓷磚每塊4元,白瓷磚每塊3元,在問(wèn)題(3)中,共需花多少元購(gòu)買(mǎi)瓷磚?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步推廣“陽(yáng)光體育”大課間活動(dòng),高新中學(xué)對(duì)已開(kāi)設(shè)的A實(shí)心球,B立定跳遠(yuǎn),C跑步,D排球四種活動(dòng)項(xiàng)目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:
(1)請(qǐng)計(jì)算本次調(diào)查中喜歡“跑步”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(2)隨機(jī)抽取了3名喜歡“跑步”的學(xué)生,其中有2名男生,1名女生,現(xiàn)從這3名學(xué)生中任意抽取2名學(xué)生,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求出剛好抽到一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,記與的函數(shù)(≠0,n≠0)的圖象為圖形G, 已知圖形G與軸交于點(diǎn),當(dāng)時(shí),函數(shù)有最。ɑ蜃畲螅┲n, 點(diǎn)B的坐標(biāo)為(, ),點(diǎn)A、B關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)分別為C、D,若A、B、C、D中任何三點(diǎn)都不在一直線(xiàn)上,且對(duì)角線(xiàn)AC,BD的交點(diǎn)與原點(diǎn)O重合,則稱(chēng)四邊形ABCD為圖形G的伴隨四邊形,直線(xiàn)AB為圖形G的伴隨直線(xiàn).
(1)如圖,若函數(shù)的圖象記為圖形G,求圖形G的伴隨直線(xiàn)的表達(dá)式;
(2)如圖,若圖形G的伴隨直線(xiàn)的表達(dá)式是,且伴隨四邊形的面積為12,求與的函數(shù)(m>0,n <0)的表達(dá)式;
(3)如圖,若圖形G的伴隨直線(xiàn)是,且伴隨四邊形ABCD是矩形,求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當(dāng)兩個(gè)全等的直角三角形如圖(1)擺放時(shí)可以利用面積法”來(lái)證明勾股定理,過(guò)程如下
如圖(1)∠DAB=90°,求證:a2+b2=c2
證明:連接DB,過(guò)點(diǎn)D作DF⊥BC交BC的延長(zhǎng)線(xiàn)于點(diǎn)F,則DF=b-a
S四邊形ADCB=
S四邊形ADCB=
∴化簡(jiǎn)得:a2+b2=c2
請(qǐng)參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com