精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在一次軍事演習中,藍方在一條東西走向的公路上的A處朝正南方向撤退,公路上距A處45千米的紅方在B處沿南偏西67°方向前進實施攔截.紅方行駛26千米到達C處后,因前方無法通行,紅方決定調整方向,再朝南偏西37°方向前進,剛好在D處成功攔截藍方.求攔截點D處到公路的距離AD.
(參考數據:sin67°≈ ,cos67°≈ ,tan67°≈ ,sin37°≈ ,cos37°≈ ,tan37°≈

【答案】解:在Rt△BCF中,

BF=BC×cos∠FBC≈10,

CF=BC×sin∠FBC≈24,

∴DE=45﹣24=21,

在Rt△DCE中,CE= ≈28,

∴AD=BG=BF+CE≈38.

答:點D處到公路的距離AD約為38千米.


【解析】在Rt△BCF中,解直角三角形得BF,CF的長,進而得出DE的長,在Rt△DCE中利用正切函數的定義得出CE的長,進而得出答案。
【考點精析】根據題目的已知條件,利用銳角三角函數的定義和解直角三角形的相關知識可以得到問題的答案,需要掌握銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數;解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數的定義.(注意:盡量避免使用中間數據和除法)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,BAy軸于點A,BCx軸于點C,函數y=﹣x0)的圖象分別交BABC于點DE,當BD3AD,且△BDE的面積為18時,則k的值是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖,已知直線m平行于直線n,折線ABC是夾在mn之間的一條折線,則、、的度數之間有什么關系?為什么?

(2)如圖,直線m依然平行于直線n,則此時、、之間有什么關系?(只需寫出結果)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD是長方形, A=B=C=D=90°,ABCDAB=CD=4,AD=BC=6,點A的坐標為(3,2).動點P的運動速度為每秒a個單位長度,動點Q的運動速度為每秒b個單位長度,且.設運動時間為t,動點P、Q相遇則停止運動.

(1) a,b的值;

(2) 動點PQ同時從點A出發(fā),點P沿長方形ABCD的邊界逆時針方向運動,點Q沿長方形ABCD的邊界順時針方向運動,當t為何值時PQ兩點相遇?求出相遇時P、Q所在位置的坐標;

(3) 動點P從點A出發(fā),同時動點Q從點D出發(fā):

①若點P、Q均沿長方形ABCD的邊界順時針方向運動,t為何值時,PQ兩點相遇?求出相遇時P、Q所在位置的坐標;

②若點P、Q均沿長方形ABCD的邊界逆時針方向運動,t為何值時,PQ兩點相遇?求出相遇時P、Q所在位置的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算題
(1)解不等式組:
(2)化簡:(x﹣ )÷

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知四邊形BCDE為平行四邊形,點A在BE的延長線上且AE=EB.連接EC,AC,AD.

(1)求證:△AED≌△EBC.
(2)若∠ACB=90°,則四邊形AECD是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題提出:如何將一個長為17,寬為1的長方形經過剪一剪,拼一拼,形成一個正方形.(下列所有圖中每個小方格的邊長都為1,剪拼過程中材料均無剩余)

問題探究:我們從長為5,寬為1的長方形入手.
(1)如圖①是一個長為5,寬為1的長方形.把這個長方形剪一剪、拼一拼后形成正方形,則正方形的面積應為 , 設正方形的邊長為a,則a=
(2)我們可以把有些帶根號的無理數的被開方數表示成兩個正整數平方和的形式,比如 = = .類比此,可以將(1)中的a表示成a=
(3) = 的幾何意義可以理解為:以長度2和3為直角邊的直角三角形的斜邊長為 ;類比此,(2)中的a可以理解為以長度為直角邊的直角三角形斜邊的長.
(4)剪一剪:由(3)可畫出如圖②的分割線,把長方形分成A、B、C、D、E五部分.
(5)拼一拼:把圖②中五部分拼接得到如圖③的正方形.
問題解決:仿照上面的探究方法請把圖④中長為17,寬為1的長方形剪一剪,在圖⑤中畫出拼成的正方形.(說明:圖④的分割過程不作評分要求,只對圖⑤中畫出的最終結果評分)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(知識生成)我們知道,用兩種不同的方法計算同一個幾何圖形的面積,可以得到一些代數恒等式.

例如:如圖可以得到(a+b)2=a2+2ab+b2,基于此,請解答下列問題:

根據如圖,寫出一個代數恒等式:

;

利用⑴中得到的結論,解決下面的問題:若a+b+c=12,,

;

小明同學用如圖中x張邊長為a的正方形,y張邊長為b的正方形,z張寬、長分別為a、b的長方形紙片拼出一個面積為(2a+b)(a+3b)的長方形,則xyz=

(知識遷移)⑷ 類似地,用兩種不同的方法計算幾何體的體積同樣可以得到一些代數恒等式.如圖表示的是一個邊長為x的正方體挖去一個邊長為2的小長方體后重新拼成一個新長方體.請你根據如圖中兩個圖形的變化關系,寫出一個代數恒等式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題原型:如圖①,在銳角中,,ADBCD,在AD上取點E,使,連結BE.求證:.問題拓展:如圖②,在問題原型的條件下,的中點,連結并延長至點,使,連結.

圖①圖②

1)判斷線段的大小關系,并說明理由.(2)若,直接寫出兩點之間的距離.

查看答案和解析>>

同步練習冊答案