【題目】已知拋物線的對稱軸是,且m為實數(shù))在范圍內(nèi)有實數(shù)根,則m的取值范圍是(

A.B.C.D.

【答案】D

【解析】

根據(jù)拋物線y=x2+bx+1的對稱軸為直線x=1,可以求得b的值,然后即可得到該函數(shù)的解析式,再根據(jù)二次函數(shù)的性質(zhì),即可得到當0x3時,y的取值范圍,另y=m,即可轉化為方程x2+bx+1-m=0,從而可以得到m的取值范圍.

解:∵拋物線y=x2+bx+3的對稱軸為直線x=1,
-=1,得b=-2,
y=x2-2x+1=x-12
∴當0x3時,y的取值范圍是0≤y4,
y=m時,m=x2+bx+1,即x2-2x+1-m=0
∵關于x的一元二次方程x2-2x+1-m=0m為實數(shù))在0x3的范圍內(nèi)有實數(shù)根,
m的取值范圍是0≤m4,
故答案為:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點在拋物線上.

1)如圖1,若拋物線經(jīng)過點

①求拋物線的解析式;

②設拋物線與軸交于點,連接,,若點在拋物線上,且的面積相等,求點的坐標;

2)如圖2,若拋物線與軸交于點D過點軸的平行線交拋物線于另一點.點為拋物線的對稱軸與軸的交點,為線段上一動點.若以M,D,E為頂點的三角形與相似.并且符合條件的點恰有個,請直接寫出拋物線的解析式及相應的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的內(nèi)接三角形,的直徑,平分,交于點,交于點,連接

求證:;

①當四邊形為平行四邊形時,的長為 ;

②若,則的長為 (結果保留)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為方便消費者購物,準備將原來的階梯式自動扶梯改造成斜坡式自動扶梯,如圖所示,已知原階梯式自動扶梯長為,坡角”改造后的斜坡式自動扶梯的坡角,若國標規(guī)定自動扶梯的速度一般是,請你計算乘坐改造后的斜坡式自動扶梯比乘坐階梯式自動扶梯多用的時間.(結果保留整數(shù),參考數(shù)據(jù):,,)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,點D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.

(1)求證:AC是⊙O的切線;

(2)當BD是⊙O的直徑時(如圖2),求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將三角形紙片放在平面直角坐標系中,,,,點Bx軸的正半軸上,點是邊上的一個動點(點P不與點O、B重合),過點P于點D,沿折疊該紙片,使點O落在射線上的Q點處.

)用含t的代數(shù)式表示線段的長;

)當點Q與點C重合時,求t的值;

)設與四邊形重疊部分的圖形的面積為S,求St之間的函數(shù)關系式;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組正方形按如圖所示放置,其中頂點 B1 y 軸上,頂點 C1,E1,E2C2,E3E4,C3 x 軸上.已知正方形 A1B1C1D1 的邊長為 1,∠B1C1O60°,B1C1B2C2B3C3,則正方形 A2020B2020C2020D2020 的邊長是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點為網(wǎng)格線的交點)

(1)將△ABC先向下平移3個單位長度,再向右平移4個單位長度后得到△A1B1C1.畫出平移后的圖形;

(2)將△ABC繞點A1順時針旋轉90°后得到△A2B2C2.畫出旋轉后的圖形;

(3)借助網(wǎng)格,利用無刻度直尺畫出△A1B1C1的中線A1D1(畫圖中要體現(xiàn)找關鍵點的方法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】足球運球是中考體育必考項目之一.我市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A、B、CD四個等級進行統(tǒng)計,制成了如圖不完整的統(tǒng)計圖.

根據(jù)所給信息,解答以下問題:

1)本次抽樣調(diào)查抽取了   名學生的成績;在扇形統(tǒng)計圖中,D對應的扇形的圓心角是   度;

2)補全條形統(tǒng)計圖;

3)所抽取學生的足球運球測試成績的中位數(shù)會落在   等級;

4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?

查看答案和解析>>

同步練習冊答案