【題目】如圖,AD是△ABC的角平分線(xiàn),∠B=45°,∠ADC=75°,求∠BAC、∠C的度數(shù).

【答案】解:∵∠B=45°,∠ADC=75°,

∴∠BAD=∠ADC﹣∠B=75°﹣45°=30°,

∵AD是△ABC的角平分線(xiàn),

∴∠BAC=2∠BAD=2×30°=60°,

在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣60°﹣45°=75°.


【解析】首先根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可求出∠BAD,再根據(jù)角平分線(xiàn)的定義可得∠BAC=2∠BAD,于是可求得∠BAC的度數(shù),最后在△ABC中利用三角形的內(nèi)角和為180°可求得∠C的度數(shù).
【考點(diǎn)精析】掌握三角形的內(nèi)角和外角和三角形的外角是解答本題的根本,需要知道三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;三角形一邊與另一邊的延長(zhǎng)線(xiàn)組成的角,叫三角形的外角;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:m6m3的結(jié)果(
A.m18
B.m9
C.m3
D.m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊邊長(zhǎng)為6cm的正三角形紙板,在它的三個(gè)角處分別截去一個(gè)彼此全等的箏形,再沿圖中的虛線(xiàn)折起,做成一個(gè)無(wú)蓋的直三棱柱紙盒,則該紙盒側(cè)面積的最大值是(

A.cm2 B.cm2 C.cm2 D.cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)多邊形的內(nèi)角和等于900,則這個(gè)多邊形是(

A. 五邊形 B. 六邊形 C. 七邊形 D. 八邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,已知AD=8,折疊紙片,使AB邊與對(duì)角線(xiàn)AC重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長(zhǎng)為( )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是(
A.12
B.24
C.12
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小賢為了體驗(yàn)四邊形的不穩(wěn)定性,將四根木條用釘子釘成一個(gè)矩形框架ABCD,B與D兩點(diǎn)之間用一根橡皮筋拉直固定,然后向右扭動(dòng)框架,觀察所得四邊形的變化,下列判斷錯(cuò)誤的是(
A.四邊形ABCD由矩形變?yōu)槠叫兴倪呅?/span>
B.BD的長(zhǎng)度增大
C.四邊形ABCD的面積不變
D.四邊形ABCD的周長(zhǎng)不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為矩形,過(guò)點(diǎn)D作對(duì)角線(xiàn)BD的垂線(xiàn),交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,取BE的中點(diǎn)F,連接DF,DF=4,設(shè)AB=x,AD=y,求x2+(y﹣4)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,二次函數(shù)的圖像過(guò)點(diǎn) A (3,0),B (0,4)兩點(diǎn),動(dòng)點(diǎn) P A 出發(fā),在線(xiàn)段 AB 上沿 A B 的方向以每秒 2 個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P PDy 于點(diǎn) D ,交拋物線(xiàn)于點(diǎn) C 設(shè)運(yùn)動(dòng)時(shí)間為 t (秒).

1)求二次函數(shù)的表達(dá)式;

(2)連接 BC ,當(dāng)t時(shí),求BCP的面積;

(3)如圖 2,動(dòng)點(diǎn) P A 出發(fā)時(shí),動(dòng)點(diǎn) Q 同時(shí)從 O 出發(fā),在線(xiàn)段 OA 上沿 OA 的方向以 1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)點(diǎn) P B 重合時(shí),P Q 兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接 DQ PQ ,將DPQ沿直線(xiàn) PC 折疊到 DPE 在運(yùn)動(dòng)過(guò)程中,設(shè) DPE OAB重合部分的面積為 S ,直接寫(xiě)出 S t 的函數(shù)關(guān)系式及 t 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案