分解因式:(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6=
t(2t2+5t+5)(t-1)(2t2+2t+3)
t(2t2+5t+5)(t-1)(2t2+2t+3)
分析:可設(shè)(t+1)3=x,y=2+t++3t,將(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6變形為(2y-3x)(y-x)-x2的形式分解因式.
解答:解:設(shè)(t+1)3=x,y=2+t++3t,則
原式=[(4+2t+2t2)-3(1+3t+3t2+t3)],
=[(2+t+t2)-(1+3t+3t2+t3)]-[(t+1)3]2,
=(2y-3x)(y-x)-x2,
=2x2-5xy+2y2,
=(2x-y)(x-2y),
=[2(t3+3t2+3t+1)-(t2+t+2)][(t3+3t2+3t+1)-2(t2+t+2)],
=(2t3+5t2+5t)(t3+t2+t-3),
=t(2t2+5t+5)(t-1)(2t2+2t+3).
故答案為:t(2t2+5t+5)(t-1)(2t2+2t+3).
點評:本題考查了用換元法分解因式,它能夠把一些整式化繁為簡,化難為易,對此應(yīng)注意總結(jié)能用換元法分解因式的特點,尋找解題技巧.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

分解因式:(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6=________.

查看答案和解析>>

同步練習(xí)冊答案