【題目】如圖,在中,,,點的中點,點在邊上,將沿翻折,使得點落在點處,當(dāng)時,那么的長為________________

【答案】

【解析】

分兩種情形分別求解,作DFABF,連接AA′.想辦法求出AE,利用等腰直角三角形的性質(zhì)求出AA′即可.

如圖,作DFABF,連接AA′.

RtACB中,BC6

∵∠DAF=∠BAC,∠AFD=∠C90°,

∴△AFD∽△ACB,

,

DF,AF,

AEAB

∴∠AEA′=90°,

由翻折不變性可知:∠AED45°,

EFDF,

AEAE

AA′=,

如圖,作DFABF,當(dāng) EA′⊥AB時,同法可得AEAA′=AE

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形中,.點從點出發(fā),沿方向勻速運動,速度為;同時,點從點出發(fā),沿方向在的延長線上勻速運動,速度為;當(dāng)點到達點時,點停止運動.過點,交于點.連接.設(shè)運動時間為,解答下列問題:

連接,當(dāng)為何值時,

設(shè)四邊形的面積為,求的函數(shù)關(guān)系式;

在運動過程中,是否存在某一時刻,使四邊形的面積為四邊形面積的,若存在,求出的值;若不存在,請說明理由;

在運動過程中,是否存在某一時刻 使若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在矩形ABCD中,AD=nAB,點M,P分別在邊AB,AD上(均不與端點重合),且AP=nAM,以AP和AM為鄰邊作矩形AMNP,連接AN,CN.

(問題發(fā)現(xiàn))

(1)如圖(2),當(dāng)n=1時,BM與PD的數(shù)量關(guān)系為 ,CN與PD的數(shù)量關(guān)系為 .

(類比探究)

(2)如圖(3),當(dāng)n=2時,矩形AMNP繞點A順時針旋轉(zhuǎn),連接PD,則CN與PD之間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請就圖(3)給出證明;若變化,請寫出數(shù)量關(guān)系,并就圖(3)說明理由.

(拓展延伸)

(3)在(2)的條件下,已知AD=4,AP=2,當(dāng)矩形AMVP旋轉(zhuǎn)至C,N,M三點共線時,請直接寫出線段CN的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強每天堅持引體向上鍛煉,他記錄了某一周每天做引體向上的個數(shù),如下表:

星期

個數(shù)

11

12

13

12

其中有三天的個數(shù)墨汁覆蓋了,但小強己經(jīng)計算出這組數(shù)據(jù)唯一眾數(shù)是13,平均數(shù)是12,那么這組數(shù)據(jù)的方差是(  )

A.B.C.1D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,上一點,是半徑上一動點(不與重合),過點作射線,分別交弦,兩點,過點的切線交射線于點

1)求證:

2)當(dāng)的中點時,

①若,判斷以為頂點的四邊形是什么特殊四邊形,并說明理由;

②若,且,則_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB//CD,點E是直線AB上的點,過點E的直線l交直線CD于點F,EG平分∠BEFCD于點G.在直線l繞點E旋轉(zhuǎn)的過程中,圖中∠1,∠2的度數(shù)可以分別是(

A.30°,110°B.56°70°C.70°,40°D.100°,40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,折疊矩形,具體操作:①點邊上一點(不與、重合),把沿所在的直線折疊,點的對稱點為點;②過點對折,折痕所在的直線交于點、點的對稱點為

1)求證:

2)若

①點在移動的過程中,求的最大值.

②如圖2,若點恰在直線上,連接,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點

1)求的值和圖象的頂點坐標(biāo);

2)點在該二次函數(shù)圖象上.

①當(dāng)時,求的值;

②若點軸的距離小于2,請根據(jù)圖象直接寫出的取值范圍;

③直接寫出點與直線的距離小于的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,為測量河岸兩燈塔之間的距離,小明在河對岸處測得燈塔在北偏東方向上,燈塔在東北方向上,小明沿河岸向東行走100米至處,測得此時燈塔在北偏西方向上,已知河兩岸

1)求觀測點到燈塔的距離;

2)求燈塔,之間的距離.

查看答案和解析>>

同步練習(xí)冊答案