(2011•化州市二模)如圖1,在邊長為5的正方形ABCD中,點E、F分別是BC、DC邊上的點,且AE⊥EF,BE=2.
(1)求EC:CF的值;
(2)延長EF交正方形外角平分線CP于點P(如圖2),試判斷AE與EP的大小關系,并說明理由;
(3)若將“邊長為5的正方形”改為“BC長為m(m>2),AB長為n(n>2),的矩形”,其他條件不變,試判斷AE與EP的大小關系,并說明理由.

【答案】分析:(1)由正方形的性質(zhì)可得:∠B=∠C=90°,由同角的余角相等,可證得:∠1=∠2,即可證得:△ABE∽△EFC,又由相似三角形的對應邊成比例,即可求得EC:CF的值;
(2)首先作輔助線:在AB上取一點M,使AM=EC,連接ME,利用ASA,易證得:△AME≌△PCE,則可證得:AE=EP;
(3)根據(jù)(2)中的證明方法,可以證得:△AME∽△ECP,又由相似三角形的對應邊成比例,即可求得:AE與EP的大小關系.
解答:解:(1)∵AE⊥EF,
∴∠2+∠3=90°,
∵四邊形ABCD為正方形,
∴∠B=∠C=90°,
∴∠1+∠3=90°,∠1=∠2,
∴△ABE∽△ECF,
∴EC:CF=AB:BE=5:2;

(2)在AB上取一點M,使BM=BE,連接ME.
∴AM=CE.
∴∠BME=45°,
∴∠AME=135°.
∵CP是外角平分線,
∴∠DCP=45°,
∴∠ECP=135°.
∴∠AME=∠ECP.
∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△PCE(ASA).
∴AE=EP.

(3)
作PN⊥BC于點N.
△ABE∽△ECF
==
∴CF=
設PN=x,則EN=m-2+x.
∵PN∥CF
∴△EFC∽△EPN
,即=
解得:x=
∵△ABE∽△ENP
====,
當m=n>2時,AE=EP,
當n>m>2時AE>EP,
當m>n>2時,AE<EP.
點評:此題考查了相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì)以及正方形的性質(zhì)等知識.此題綜合性很強,圖形比較復雜,解題的關鍵是注意數(shù)形結合思想的應用與輔助線的準確選擇.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年廣東省茂名市化州市中考數(shù)學二模試卷(解析版) 題型:解答題

(2011•化州市二模)如圖在平面直角坐標系xoy中,正方形OABC的邊長為2厘米,點A、C分別在y軸的負半軸和x軸的正半軸上.拋物線y=ax2+bx+c經(jīng)過點A,B和點D(4,
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2厘米/秒的速度向點B移動,同時點Q由B點開始沿BC邊以1厘米/秒的速度向點C移動.若P、Q中有一點到達終點,則另一點也停止運動,設P、Q兩點移動的時間為t秒,S=PQ2(厘米2)寫出S與t之間的函數(shù)關系式,并寫出t的取值范圍,當t為何值時,S最�。�
(3)當s取最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標;如果不存在,請說明理由.
(4)在拋物線的對稱軸上求出點M,使得M到D,A距離之差最大?寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年廣東省茂名市化州市中考數(shù)學二模試卷(解析版) 題型:填空題

(2011•化州市二模)拋物線開口向下,則a=   

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(37)(解析版) 題型:解答題

(2011•化州市二模)如圖在平面直角坐標系xoy中,正方形OABC的邊長為2厘米,點A、C分別在y軸的負半軸和x軸的正半軸上.拋物線y=ax2+bx+c經(jīng)過點A,B和點D(4,
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2厘米/秒的速度向點B移動,同時點Q由B點開始沿BC邊以1厘米/秒的速度向點C移動.若P、Q中有一點到達終點,則另一點也停止運動,設P、Q兩點移動的時間為t秒,S=PQ2(厘米2)寫出S與t之間的函數(shù)關系式,并寫出t的取值范圍,當t為何值時,S最�。�
(3)當s取最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標;如果不存在,請說明理由.
(4)在拋物線的對稱軸上求出點M,使得M到D,A距離之差最大?寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年廣東省茂名市化州市中考數(shù)學二模試卷(解析版) 題型:解答題

(2011•化州市二模)如圖,點O是△ABC的內(nèi)切圓的圓心,∠BAC=80°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(37)(解析版) 題型:解答題

(2011•化州市二模)如圖,點O是△ABC的內(nèi)切圓的圓心,∠BAC=80°,求∠BOC的度數(shù).

查看答案和解析>>

同步練習冊答案