在第一象限內(nèi),點(diǎn)P(2,3),M(a,2)是雙曲線y=(k≠0)上的兩點(diǎn),PA⊥x軸于點(diǎn)A,MB⊥x軸于點(diǎn)B,PA與OM交于點(diǎn)C,則△OAC的面積為  


 

  解:∵點(diǎn)P(2,3)在雙曲線y=(k≠0)上,

∴k=2×3=6,

∴y=,

當(dāng)y=2時(shí),x=3,即M(3,2).

∴直線OM的解析式為y=x,

當(dāng)x=2時(shí),y=,即C(2,).

∴△OAC的面積=×2×=

故答案為:

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省無(wú)錫市天一實(shí)驗(yàn)學(xué)校九年級(jí)中考一模數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分7分)如圖,在矩形ABCD中,點(diǎn)E在BC上,AE=AD,DF⊥AE于F,連接DE.

證明:DF=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省無(wú)錫市九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

在直角坐標(biāo)系中,已知O(0,0),A(2,0),B(0,4),C(0,3),D為x軸上一點(diǎn).若以D、O、C為頂點(diǎn)的三角形與△AOB相似,這樣的D點(diǎn)有( )

A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)[w

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


在盒子里放有三張分別寫有整式a+1,a+2,2的卡片,從中隨機(jī)抽取兩張卡片,把兩張卡片上的整式分別作為分子和分母,則能組成分式的概率是( 。

  A.  B.  C.  D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知x﹣3y=0,求•(x﹣y)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在△ABC中,∠C=90°,AC+BC=8,點(diǎn)O是斜邊AB上一點(diǎn),以O(shè)為圓心的⊙O分別與AC,BC相切于點(diǎn)D,E.

(1)當(dāng)AC=2時(shí),求⊙O的半徑;

(2)設(shè)AC=x,⊙O的半徑為y,求y與x的函數(shù)關(guān)系式.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,△ABC中,BD平分∠ABC,BC的中垂線交BC于點(diǎn)E,交BD于點(diǎn)F,連接CF.若∠A=60°,∠ABD=24°,則∠ACF的度數(shù)為(  )

 

A.

48°

B.

36°

C.

30°

D.

24°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


閱讀與應(yīng)用:

閱讀1:a、b為實(shí)數(shù),且a>0,b>0,因?yàn)椋?sub>2≥0,所以a﹣2+b≥0從而a+b≥2當(dāng)a=b時(shí)取等號(hào)).

閱讀2:若函數(shù)y=x+;(m>0,x>0,m為常數(shù)),由閱讀1結(jié)論可知:x+≥2,所以當(dāng)x=,即x=時(shí),函數(shù)y=x+的最小值為2

閱讀理解上述內(nèi)容,解答下列問題:

問題1:已知一個(gè)矩形的面積為4,其中一邊長(zhǎng)為x,則另一邊長(zhǎng)為,周長(zhǎng)為2(x+),求當(dāng)x= 2 時(shí),周長(zhǎng)的最小值為   

問題2:已知函數(shù)y1=x+1(x>﹣1)與函數(shù)y2=x2+2x+10(x>﹣1),

當(dāng)x=   時(shí),的最小值為   ;

問題3:某民辦學(xué)校每天的支出總費(fèi)用包含以下三個(gè)部分:一是教職工工資4900元;二是學(xué)生生活費(fèi)成本每人10元;三是其他費(fèi)用.其中,其他費(fèi)用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.01.當(dāng)學(xué)校學(xué)生人數(shù)為多少時(shí),該校每天生均投入最低?最低費(fèi)用是多少元?(生均投入=支出總費(fèi)用÷學(xué)生人數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


關(guān)于反比例函數(shù),下列說法正確的是                          (      )

A.圖象過(1,2)點(diǎn)                   B.圖象在第一、三象限          

C.當(dāng)時(shí),的增大而減小       D.當(dāng)時(shí), 的增大而增大

查看答案和解析>>

同步練習(xí)冊(cè)答案