精英家教網 > 初中數學 > 題目詳情
(2009•寧波)如圖,梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,作DE∥AB交BC于點E,若AD=3,BC=10,則CD的長是   
【答案】分析:由于AD∥BC,DE∥AB,根據兩組對邊分別平行的四邊形是平行四邊形可以判定ABED是平行四邊形,則AD=BE,而∠B=70°,∠C=40°,由此可以證明△CDE是等腰三角形,所以CD=BC-BE=BC-AD,由此就可以求出CD.
解答:解:∵DE∥AB,
∴∠DEC=∠B=70°,
而∠C=40°,
∴∠CDE=70°,
∴CD=CE.
又∵AD∥BE,AB∥DE,
∴四邊形ABED是平行四邊形.
∴BE=AD=3,
又∵BC=10,
∴CE=CB-BE=10-3=7,
∴CD=CE=7.
點評:此題首先通過輔助線把梯形的問題轉換成平行四邊形和三角形的問題.主要考查了平行四邊形和等腰三角形的性質和判定,是一道比較基礎的綜合運算題.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《二次函數》(03)(解析版) 題型:解答題

(2009•寧波)如圖拋物線y=ax2-5ax+4a與x軸相交于點A、B,且過點C(5,4).
(1)求a的值和該拋物線頂點P的坐標.
(2)請你設計一種平移的方法,使平移后拋物線的頂點落在第二象限,并寫出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源:2009年浙江省寧波市中考數學試卷(解析版) 題型:解答題

(2009•寧波)如圖拋物線y=ax2-5ax+4a與x軸相交于點A、B,且過點C(5,4).
(1)求a的值和該拋物線頂點P的坐標.
(2)請你設計一種平移的方法,使平移后拋物線的頂點落在第二象限,并寫出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源:2009年全國中考數學試題匯編《四邊形》(11)(解析版) 題型:解答題

(2009•寧波)如圖1,在平面直角坐標系中,O為坐標原點,點A的坐標為(-8,0),直線BC經過點B(-8,6),C(0,6),將四邊形OABC繞點O按順時針方向旋轉α度得到四邊形OA′B′C′,此時OA′、B′C′分別與直線BC相交于P、Q.
(1)四邊形OA′B′C′的形狀是______,當α=90°時,的值是______;
(2)①如圖2,當四邊形OA′B′C′的頂點B′落在y軸正半軸上時,求的值;
②如圖3,當四邊形OA′B′C′的頂點B′落在直線BC上時,求△OPB′的面積;
(3)在四邊形OABC旋轉過程中,當0°<α≤180°時,是否存在這樣的點P和點Q,使BP=BQ?若存在,請直接寫出點P的坐標;若不存在,請說明理由.


查看答案和解析>>

科目:初中數學 來源:2010年廣東省佛山市南海區(qū)大瀝鎮(zhèn)中考數學模擬試卷(解析版) 題型:填空題

(2009•寧波)如圖,⊙A、⊙B的圓心A、B在直線l上,兩圓半徑都為1cm,開始時圓心距AB=4cm,現⊙A、⊙B同時沿直線l以每秒2cm的速度相向移動,則當兩圓相切時,⊙A運動的時間為    秒.

查看答案和解析>>

科目:初中數學 來源:2010年初中數學第一輪復習教學案例7.2.解直角三角形及其應用(解析版) 題型:填空題

(2009•寧波)如圖,在坡屋頂的設計圖中,AB=AC,屋頂的寬度l為10米,坡角α為35°,則坡屋頂的高度h為    米.(結果精確到0.1米)

查看答案和解析>>

同步練習冊答案