已知,如圖,小于半圓周,它所在的圓的圓心為O,半徑為13,弦AB的長(zhǎng)為24;C是弦AB上的一個(gè)動(dòng)點(diǎn)(異于A、B),過(guò)C作AB的垂線交于點(diǎn)P,以PC為直徑的圓交AP于點(diǎn)D;E為AP的中點(diǎn),連結(jié)OE.

(1)當(dāng)點(diǎn)D、E不重合時(shí),如圖(1),求證OE∥CD;

(2)當(dāng)點(diǎn)C是弦AB的中點(diǎn)時(shí),如圖(2),求PD的長(zhǎng);

(3)當(dāng)點(diǎn)D、E重合時(shí),請(qǐng)你推斷∠PAB的大小為多少度(只需給出結(jié)論,不必給出證明).

答案:
解析:

  (1)因?yàn)镃P是小圓的直徑,所以CD⊥AP,又E是AP的中點(diǎn).所以O(shè)E⊥AP,所以CD∥OE.

  (2)連結(jié)OA,∵C是弦AB的中點(diǎn),CP⊥AB,所以P、C、O三點(diǎn)共線.在Rt△ACO中OA=13,AC=AB=12,所以O(shè)C=5.又OP=13,所以CP=8.由(1)中結(jié)論知CD⊥AP,所以△PCD∽△PAC,所以,所以PC2=PD·PA,所以82=PD·PA.又在Rt△PCA中PC=8,AC=12,所以PA==4.所以有82=4·PD,PD=.

  (3)∠PAB=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB=AC+BD,∠CAB=∠ABD=90°AD交BC于P,⊙P與AB相切于點(diǎn)Q.設(shè)AC=a,BD=b(a≤b).
(1)求⊙P的半徑r;
(2)以AB為直徑在AB的上方作半圓O(用尺規(guī)作圖,保留痕跡,不寫作法),請(qǐng)你探索⊙O與⊙P的位置關(guān)系,做出判斷并加以證明;
(3)設(shè)a=2,b=4,能否在半圓O中,再畫出兩個(gè)與⊙P同樣大小的⊙M和⊙N,使這3個(gè)小圓兩兩相交精英家教網(wǎng),并且每?jī)蓚(gè)小圓的公共部分的面積都小于
5.18
π?請(qǐng)說(shuō)出你的結(jié)論,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,弓形AmB小于半圓,它所在圓的圓心為O,半徑為13,弦AB的長(zhǎng)為24;C是弦AB上的一動(dòng)點(diǎn)(異于A、B),過(guò)C作AB的垂線交弧AB于點(diǎn)P,以PC為直徑的圓交AP于點(diǎn)D;E是AP的中點(diǎn),連接OE.
(1)當(dāng)點(diǎn)D、E不重合時(shí)(如圖1),求證:OE∥CD;
(2)當(dāng)點(diǎn)C是弦AB的中點(diǎn)時(shí)(如圖2),求PD的長(zhǎng);
(3)當(dāng)點(diǎn)D、E重合時(shí),請(qǐng)你推斷∠PAB的大小為多少度(只需寫出結(jié)論,不必給出證明)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,弓形AmB小于半圓,它所在圓的圓心為O,半徑為13,弦AB的長(zhǎng)為24;C是弦AB上的一動(dòng)點(diǎn)(異于A、B),過(guò)C作AB的垂線交弧AB于點(diǎn)P,以PC為直徑的圓交AP于點(diǎn)D;E是AP的中點(diǎn),連接OE.
(1)當(dāng)點(diǎn)D、E不重合時(shí)(如圖1),求證:OE∥CD;
(2)當(dāng)點(diǎn)C是弦AB的中點(diǎn)時(shí)(如圖2),求PD的長(zhǎng);
(3)當(dāng)點(diǎn)D、E重合時(shí),請(qǐng)你推斷∠PAB的大小為多少度(只需寫出結(jié)論,不必給出證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年江蘇省無(wú)錫市中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,弓形AmB小于半圓,它所在圓的圓心為O,半徑為13,弦AB的長(zhǎng)為24;C是弦AB上的一動(dòng)點(diǎn)(異于A、B),過(guò)C作AB的垂線交弧AB于點(diǎn)P,以PC為直徑的圓交AP于點(diǎn)D;E是AP的中點(diǎn),連接OE.
(1)當(dāng)點(diǎn)D、E不重合時(shí)(如圖1),求證:OE∥CD;
(2)當(dāng)點(diǎn)C是弦AB的中點(diǎn)時(shí)(如圖2),求PD的長(zhǎng);
(3)當(dāng)點(diǎn)D、E重合時(shí),請(qǐng)你推斷∠PAB的大小為多少度(只需寫出結(jié)論,不必給出證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2002•濟(jì)南)如圖,已知AB=AC+BD,∠CAB=∠ABD=90°AD交BC于P,⊙P與AB相切于點(diǎn)Q.設(shè)AC=a,BD=b(a≤b).
(1)求⊙P的半徑r;
(2)以AB為直徑在AB的上方作半圓O(用尺規(guī)作圖,保留痕跡,不寫作法),請(qǐng)你探索⊙O與⊙P的位置關(guān)系,做出判斷并加以證明;
(3)設(shè)a=2,b=4,能否在半圓O中,再畫出兩個(gè)與⊙P同樣大小的⊙M和⊙N,使這3個(gè)小圓兩兩相交,并且每?jī)蓚(gè)小圓的公共部分的面積都小于π?請(qǐng)說(shuō)出你的結(jié)論,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案