【題目】閱讀材料:①韋達定理:設(shè)一元二次方程ax2+bx+c=0(且a≠0)中,兩根有如下關(guān)系:,.
②已知p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,求 的值.
解:由p2﹣p﹣1=0及1﹣q﹣q2=0,可知p≠0,q≠0.
又∵pq≠1,∴ ;
∴1﹣q﹣q2=0可變形為的特征.
所以p與是方程x2﹣x﹣1=0的兩個不相等的實數(shù)根.
則p+=1,
∴=1.
根據(jù)閱讀材料所提供的方法,完成下面的解答.
已知:2m2﹣5m﹣1=0,,且m≠n.求: 的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線 l 經(jīng)過點A(2,﹣3),與 x 軸交于點 B,且與直線y=3x-平行.
(1)求直線l的函數(shù)解析式及點B的坐標;
(2)如直線l上有一點 M(a,﹣6),過點 M 作 x 軸的垂線,交直線 y=3x-于點N,在線段MN上求一點P,使△PAB是直角三角形,請求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知等邊△ABC的兩個頂點的坐標為A(-4,0),B(2,0).
(1)用尺規(guī)作圖作出點C,并求出點C的坐標;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x與反比例函數(shù)y= (k≠0,x>0)的圖象交于點A(1,a),點B是此反比例函數(shù)圖象上任意一點(不與點A重合),BC⊥x軸于點C.
(1)求k的值;
(2)求△OBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD在平面直角坐標系中的位置如圖所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函數(shù)的圖象經(jīng)過點C.
(1)求此反比例函數(shù)的解析式;
(2)將平行四邊形ABCD沿x軸翻折得到平行四邊形AD′C′B,請你通過計算說明點D′在雙曲線上;
(3)請你畫出△AD′C,并求出它的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線分別與軸,軸交于兩點.
(1)求線段AB的長度;
(2)若點在第二象限,且△為等腰直角三角形,求點的坐標;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中,兩個三角形的頂點都在格點(網(wǎng)線的交點)上,下列方案中不能把△ABC平移至△DEF位置的是( )
A.先把△ABC沿水平方向向右平移4個單位長度,再向上平移3個單位長度
B.先把△ABC向上平移3個單位長度,再沿水平方向向右平移4個單位長度
C.把△ABC沿BE方向移動5個單位長度
D.把△ABC沿BE方向移動6個單位長度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:x2﹣6x=(x2﹣6x+9)﹣9=(x﹣3)2﹣9;﹣x2+10=﹣(x2﹣10x+25)+25=﹣(x﹣5)2+25,這一種方法稱為配方法,利用配方法請解以下各題:
(1)按上面材料提示的方法填空:a2﹣4a= = .﹣a2+12a= = .
(2)探究:當(dāng)a取不同的實數(shù)時在得到的代數(shù)式a2﹣4a的值中是否存在最小值?請說明理由.
(3)應(yīng)用:如圖.已知線段AB=6,M是AB上的一個動點,設(shè)AM=x,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長方形MBCN.問:當(dāng)點M在AB上運動時,長方形MBCN的面積是否存在最大值?若存在,請求出這個最大值;否則請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,以□ABCD的頂點A為圓心,AB為半徑作圓,分別交AD,BC于點E、F,延長BA交⊙A于G.
(1)求證:.
(2)若的度數(shù)為70°,求∠C的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com