如圖,直線y1=kx+b過點A(0,2),且與直線y2=mx交于點P(1,m),則不等式組mx>kx+b>mx-2的解集是( )

A.1<X<2
B.0<X<2
C.0<X<1
D.1<X
【答案】分析:由于一次函數(shù)y1同時經(jīng)過A、P兩點,可將它們的坐標分別代入y1的解析式中,即可求得k、b與m的關(guān)系,將其代入所求不等式組中,即可求得不等式的解集.
解答:解:由于直線y1=kx+b過點A(0,2),P(1,m),
則有:,
解得
∴直線y1=(m-2)x+2.
故所求不等式組可化為:
mx>(m-2)x+2>mx-2,
0>-2x+2>-2,
解得:1<x<2,
故選A.
點評:本題主要考查了根據(jù)圖形確定k、b與m的關(guān)系,從而通過解不等式組得到其解集,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y1=kx+b與雙曲線y2=
mx
相交于A(-2,1),B(1,n)兩點.
(1)當x為何值時,y1>y2;
(2)把直線y1=kx+b平移,使平移后的直線與坐標軸圍成的三角形面積為2,求平移后得到的直線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y1=kx+b過點A(0,2),且與直線y2=mx交于點P(1,m),則不等式組mx>kx+b>mx-2的解集是( 。
A、1<X<2B、0<X<2C、0<X<1D、1<X

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y1=kx+b經(jīng)過點P(5,3),且分別與已知直線y2=3x交于點A、與x軸交于精英家教網(wǎng)點B.設(shè)點A的橫坐標為m(m>1且m≠5).
(1)用含m的代數(shù)式表示k;
(2)寫出△AOB的面積S關(guān)于m的函數(shù)解析式;
(3)在直線y2=3x上是否存在點A,使得△AOB面積最?若存在,請求出點A的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,直線y1=kx+b與y2=-x-1交于點P,它們分別與x軸交于A、B,且B、P、A三點的橫坐標分別為-1,-2,-3,則滿足y1>y2的x的取值范圍是
x>-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y1=kx+b與y2=mx+n相交于點P,則不等式組
kx+b>0
y2≥0
的解集為
-3≤x<1
-3≤x<1

查看答案和解析>>

同步練習(xí)冊答案