【題目】如圖,圓柱形玻璃杯,高為,底面周長為,在杯內(nèi)離杯底的點處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿與蜂蜜相對的點處,則螞蟻到達蜂蜜的最短距離為( ).
A. 15B. C. 12D. 18
【答案】A
【解析】
過C作CQ⊥EF于Q,作A關(guān)于EH的對稱點A′,連接A′C交EH于P,連接AP,則AP+PC就是螞蟻到達蜂蜜的最短距離,求出A′Q,CQ,根據(jù)勾股定理求出A′C即可.
解:沿過A的圓柱的高剪開,得到矩形EFGH,
過C作CQ⊥EF于Q,作A關(guān)于EH的對稱點A′,連接A′C交EH于P,連接AP,則AP+PC就是螞蟻到達蜂蜜的最短距離,
∵AE=A′E,A′P=AP,
∴AP+PC=A′P+PC=A′C,
∵CQ=×18cm=9cm,A′Q=12cm-4cm+4cm=12cm,
在Rt△A′QC中,由勾股定理得:A′C==15cm,
故答案為:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人用如下方法測一鋼管的內(nèi)徑:將一小段鋼管豎直放在平臺上.向內(nèi)放入兩個半徑為5 cm的鋼球,測得上面一個鋼球的最高點到底面的距離DC=16 cm(鋼管的軸截面如圖所示),則鋼管的內(nèi)徑AD的長為_______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,∠A=60°,∠ACB=45°,以BC為弦作⊙O,交AC于點D,OD與BC交于點E,若AB與⊙O相切,則下列結(jié)論:
①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤
正確的有( 。
A. ①② B. ①④⑤ C. ①②④⑤ D. ①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,AC=8,cosA=,D是AB邊的中點,E是AC邊上一點,聯(lián)結(jié)DE,過點D作DF⊥DE交BC邊于點F,聯(lián)結(jié)EF.
(1)如圖1,當DE⊥AC時,求EF的長;
(2)如圖2,當點E在AC邊上移動時,∠DFE的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出∠DFE的正切值;
(3)如圖3,聯(lián)結(jié)CD交EF于點Q,當△CQF是等腰三角形時,請直接寫出BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=3,BC=2,沿對角線AC剪開(如圖①);固定△ADC,把△ABC沿AD方向平移(如圖②),當兩個三角形重疊部分的面積最大時,移動的距離AA′等于( )
A. 1 B. 1.5 C. 2 D. 0.8或1.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在數(shù)軸上A點表示數(shù)a,B點示數(shù)b,C點表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數(shù)軸折疊,使得A點與C點重合,則點B與數(shù) 表示的點重合.
(3) 點A,B,C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)
(4) 請問:3BC-2AB的值是否隨著時間t的變化而改變? 若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料解決問題:兩個多位數(shù)整數(shù),若它們各數(shù)位上的數(shù)字之和相等,則稱這兩個多位數(shù)互為“調(diào)和數(shù)”,例如37和82,它們各數(shù)位上的數(shù)字之和分別為3+7和8+2,顯然3+7=8+2=10故37和82互為“調(diào)和數(shù)”.
(1)下列說法錯誤的是
A.123和51互為調(diào)和數(shù)” ; B.345和513互為“調(diào)和數(shù); C.2018和8120互為“調(diào)和數(shù)”; D.兩位數(shù)和互為“調(diào)和數(shù)”
(2)若A、B是兩個不等的兩位數(shù),A=,B=,A和B互為“調(diào)和數(shù)”,且A與B之和是B與A之差的3倍,求證:y=-x+9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線 y=x2﹣x﹣與x軸交于A、B、兩點(點A在點B的左側(cè)),與y軸交于點C.
(1)判斷△ABC形狀,并說明理由.
(2)在拋物線第四象限上有一點,它關(guān)于x軸的對稱點記為點P,點M是直線BC上的一動點,當△PBC的面積最大時,求PM+MC的最小值;
(3)如圖2,點K為拋物線的頂點,點D在拋物線對稱軸上且縱坐標為,對稱軸右側(cè)的拋物線上有一動點E,過點E作EH∥CK,交對稱軸于點H,延長HE至點F,使得EF=,在平面內(nèi)找一點Q,使得以點F、H、D、Q為頂點的四邊形是軸對稱圖形,且過點Q的對角線所在的直線 是對稱軸,請問是否存在這樣的點Q,若存在請直接寫出點E的橫坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這是某市部分簡圖,為了確定各建筑物的位置:
(1)請你以火車站為原點建立平面直角坐標系;
(2)寫出市場、超市的坐標;
(3)請將體育場、賓館和火車站看作三點用線段連起來,得,然后將此三角形向下平移4個單位長度,再畫出平移后的;
(4)根據(jù)坐標情況,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com