【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(4,2)點(diǎn)M是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),反比例函數(shù)k0,x0)的圖象經(jīng)過點(diǎn)M且與邊AB交于點(diǎn)N,連接MN

(1)當(dāng)點(diǎn)M是邊BC的中點(diǎn)時(shí),求反比例函數(shù)的表達(dá)式;

(2)在點(diǎn)M的運(yùn)動(dòng)過程中,試證明:是一個(gè)定值.

【答案】(1);(2)證明見解析.

【解析】

1)根據(jù)待定系數(shù)法,可得反比例函數(shù)解析式;

2根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系可得點(diǎn)M、N坐標(biāo),根據(jù)線段的和差,可得MB,BN根據(jù)分式的性質(zhì),可得答案

1)矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(4,2),點(diǎn)M是邊BC的中點(diǎn),M2,2).

反比例函數(shù)y=k0,x0)的圖象經(jīng)過點(diǎn)M,k=2×2=4反比例函數(shù)解析式為

2)設(shè)M點(diǎn)坐標(biāo)為(x,2).

∵反比例函數(shù)y=k0,x0)的圖象經(jīng)過點(diǎn)M2x=k,∴x=MB=4=

∵反比例函數(shù)y=k0,x0)的圖象經(jīng)過點(diǎn)M且與邊AB交于點(diǎn)NN點(diǎn)的橫坐標(biāo)是4,當(dāng)x=4時(shí)y=,N點(diǎn)的坐標(biāo)是(4,),NB=2=

==2是一個(gè)定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高低杠是女子體操特有的一個(gè)競(jìng)技項(xiàng)目,其比賽器材由高、低兩根平行杠及若干支架組成,運(yùn)動(dòng)員可根據(jù)自己的身高和習(xí)慣在規(guī)定范圍內(nèi)調(diào)節(jié)高、低兩杠間的距離.某興趣小組根據(jù)高低杠器材的一種截面圖編制了如下數(shù)學(xué)問題,請(qǐng)你解答.

如圖所示,底座上A,B兩點(diǎn)間的距離為90cm.低杠上點(diǎn)C到直線AB的距離CE的長為155cm,高杠上點(diǎn)D到直線AB的距離DF的長為234cm,已知低杠的支架AC與直線AB的夾角∠CAE82.4°,高杠的支架BD與直線AB的夾角∠DBF80.3°.求高、低杠間的水平距離CH的長.(結(jié)果精確到1cm,參考數(shù)據(jù)sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某海監(jiān)船以20海里/小時(shí)的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處時(shí),測(cè)得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時(shí)到達(dá)B處,測(cè)得島嶼P在其北偏西30°方向,保持航向不變又航行2小時(shí)到達(dá)C處,此時(shí)海監(jiān)船與島嶼P之間的距離(即PC的長)為(  )

A. 40海里 B. 60海里 C. 20海里 D. 40海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、4、5;三個(gè)連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;事實(shí)上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).

(1)另外利用一些構(gòu)成勾股數(shù)的公式也可以寫出許多勾股數(shù),畢達(dá)哥拉斯學(xué)派提出的公式:a2n+1b2n2+2nc2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請(qǐng)證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).

(2)然而,世界上第一次給出的勾股數(shù)公式,收集在我國古代的著名數(shù)學(xué)著作《九章算術(shù)》中,書中提到:當(dāng)a(m2n2),bmnc(m2+n2)(m、n為正整數(shù),mn時(shí),a、b、c構(gòu)成一組勾股數(shù);利用上述結(jié)論,解決如下問題:已知某直角三角形的邊長滿足上述勾股數(shù),其中一邊長為37,且n5,求該直角三角形另兩邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在RtABC中,ABAC3,在△ABC內(nèi)作第一個(gè)內(nèi)接正方形DEFG;然后取GF的中點(diǎn)P,連接PD、PE,在△PDE內(nèi)作第二個(gè)內(nèi)接正方形HIKJ;再取線段KJ的中點(diǎn)Q,在△QHI內(nèi)作第三個(gè)內(nèi)接正方形依次進(jìn)行下去,則第2014個(gè)內(nèi)接正方形的邊長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,AC=3,AB=4,D為斜邊BC的中點(diǎn),E為AB上一個(gè)動(dòng)點(diǎn),將△ABC沿直線DE折疊,A,C的對(duì)應(yīng)點(diǎn)分別為,交BC于點(diǎn)F,若△BEF為直角三角形,則BE的長度為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0),過(1,y1)、(2,y2).下列結(jié)論:y10時(shí),則a+b+c0 a2b時(shí),則y1y2y10,y20,且a+b0,則a0.其中正確的結(jié)論個(gè)數(shù)為( 。

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q從點(diǎn)B沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/s.若P,Q同時(shí)開始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結(jié)論錯(cuò)誤的是【 】

A.AE=6cm B.

C.當(dāng)0<t≤10時(shí), D.當(dāng)t=12s時(shí),PBQ是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,以AC為直徑的⊙OAB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線.交BC于點(diǎn)E.

(1)求證:BE=EC

(2)填空:①若∠B=30°,AC=2,則DB=   

②當(dāng)∠B=   度時(shí),以O,D,E,C為頂點(diǎn)的四邊形是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案