如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象與軸交于(-1,0)、(3,0)兩點(diǎn), 頂點(diǎn)為.

(1) 求此二次函數(shù)解析式;
(2) 點(diǎn)為點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn),過點(diǎn)作直線BD于點(diǎn)E,過點(diǎn)作直線交直線點(diǎn).問:在四邊形ABKD的內(nèi)部是否存在點(diǎn)P,使得它到四邊形ABKD四邊的距離都相等,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3) 在(2)的條件下,若、分別為直線和直線上的兩個(gè)動(dòng)點(diǎn),連結(jié)、、,求和的最小值.

(1) (2) 點(diǎn)P與點(diǎn)E重合時(shí),即是滿足題意的點(diǎn),坐標(biāo)為(2, )
(3)8

解析試題分析:(1) ∵點(diǎn)AB的坐標(biāo)分別為(-1,0)、(3,0),


解得
∴二次函數(shù)解析式為.
(2)可求點(diǎn)C的坐標(biāo)為(1,
∴點(diǎn)D的坐標(biāo)為(1,).
可求直線AD的解析式為 .
由題意可求直線BK的解析式為.
∵直線的解析式為,
∴可求出點(diǎn)K的坐標(biāo)為(5,).易求 .
∴四邊形ABKD是菱形.
∵菱形的中心到四邊的距離相等,
∴點(diǎn)P與點(diǎn)E重合時(shí),即是滿足題意的點(diǎn),坐標(biāo)為(2, ) . 
(3) ∵點(diǎn)D、B關(guān)于直線AK對(duì)稱,
的最小值是.
KKFx軸于F點(diǎn). 過點(diǎn)K作直線AD的對(duì)稱點(diǎn)P,連接KP,交直線AD于點(diǎn)Q,
KPAD.
AK是∠DAB的角平分線,
.
的最小值是.即BP的長(zhǎng)是的最小值.
BKAD,
.
在Rt△BKP中,由勾股定理得BP=8.
的最小值為8.    
考點(diǎn):二次函數(shù)
點(diǎn)評(píng):本題難度較大,主要考查學(xué)生對(duì)二次函數(shù)性質(zhì)的掌握,本題難度較高在圖像分析較復(fù)雜,需要學(xué)生有扎實(shí)基礎(chǔ)來理清思路。一般為壓軸題型,基礎(chǔ)較好的同學(xué)要多加訓(xùn)練,培養(yǎng)解題感覺。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案