【題目】如圖,已知拋物線經(jīng)過點A(-1,0)、B(3,0)、C(0,3)三點。
(1)求拋物線的解析式。
(2)求△ABC的面積。若P是拋物線上一點(異于點C),且滿足△ABP的面積等于△ABC的面積,求滿足條件的點P的坐標。
(3)點M是線段BC上的點(不與B,C重合),過M作MN∥軸交拋物線于N,若點M的橫坐標為,請用含的代數(shù)式表示線段MN的長。
(4)在(3)的條件下,連接NB、NC,則是否存在點M,使△BNC的面積最大?若存在,求的值,并求出△BNC面積的最大值。若不存在,說明理由。
【答案】(1)y=-x2+2x+3 (2)(2,3)(,-3)(,-3) (3)MN=-m2+3m (4)存在
【解析】試題分析:
(1)根據(jù)已知條件設(shè)拋物線的解析式為頂點式,代入點C的坐標求得的值就可得解析式為;
(2)由已知條件可求得△ABC的面積為6,由點P在拋物線上可設(shè)其坐標為,則由題意可得△ABP中,AB邊上的高為,由此可求得的值,從而可得點P的坐標;
(3)如圖1由已知可求出直線BC的解析式,再由MN∥軸,可用含“”的代數(shù)式表達出M、N的縱坐標,用點N的縱坐標減去M的縱坐標可得MN的長;
(4)如圖2,連接BN、CN,設(shè)△BNC的面積為S,由S=MN(OD+BD)可表達出面積,結(jié)合(3)中“”的取值范圍可求出S的最大值.
試題解析:
(1)由已知條件可設(shè)拋物線解析式為,
∵點C(0,3)在拋物線上.
∴,解得,
∴拋物線解析式為.
(2)∵點A、B、C的坐標分別為:A(-1,0)、B(3,0)、C(0,3),
∴AB=4,OC=3
∴ S△ABC=,
設(shè)點P的坐標為,
∵ S△ABP= S△ABC=6,
∴點P縱坐標的絕對值等于OC的長,即:
當-x2+2x+3.=3時,解得
∴P(0,3)(舍), P(2,3)
當-x2+2x+3.=-3時,解得
∴P(,-3), P(,-3)
∴滿足條件的點P的坐標為(2,3)(,-3)(,-3)
(3)如圖1,設(shè)MN交x軸于點D,
∵MN∥y軸,點M橫坐標為m,
∴N的橫坐標為m, D(m,0)
∵點N在拋物線上
∴點N的坐標為N( m, -m2+2m+3),
設(shè)直線BC解析式為y=kx+b,
∴ 解得
∴直線BC的解析式為y= -x+3.
∵點M在直線BC上,
∴點M(m, -m+3)
∴MN=DN-DM=(-m2+2m+3)-(-m+3)=-m2+3m
(4)存在.如2,連接BN、CN
設(shè)△BNC的面積為S,則
∵,且,
∴時,△BNC的面積最大,最大面積為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題12分)某經(jīng)銷店經(jīng)銷一種建筑材料,當每噸售價為260元時,月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準備采取降價的方式進行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當每噸售價每下降10元時,月銷售量就會增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需成本及其它費用100元.設(shè)每噸材料售價為x(元),該經(jīng)銷店的月利潤為y(元).
(1)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)該經(jīng)銷店要獲得最大月利潤,售價應(yīng)定為每噸多少元;
(3)小王說:“當月利潤最大時,月銷售額也最大.”你認為對嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平而直角坐標系中,點E在x軸上方,y軸的左側(cè),距離x軸3個單位,距離y軸4個單位,則E點的坐標為( 。
A. (3,﹣4)B. (4,﹣3)C. (﹣4,3)D. (﹣3,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為分析2000名學(xué)生的數(shù)學(xué)考試成績,從中抽取100份.在這個問題中,下列說法正確的是( )
A.每名學(xué)生是個體
B.從中抽取的100名學(xué)生是總體的一個樣本
C.2000名學(xué)生是總體
D.樣本的容量是100
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 哥哥的身高比弟弟高是必然事件
B. 今年的12月1日有雨是不確定事件
C. 隨機擲一枚均勻的硬幣兩次,都是正面朝上是不可能事件
D. “彩票中獎的概率為”表示買5張彩票肯定會中獎
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】★如圖,在平面直角坐標系xOy中,直線y=x-2與x軸、y軸分別交于A,B兩點,P是直線AB上一動點,⊙P的半徑為1.
(1)判斷原點O與⊙P的位置關(guān)系,并說明理由;
(2)當⊙P過點B時,求⊙P被y軸所截得的劣弧的長;
(3)當⊙P與x軸相切時,求出切點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016·新疆中考)如圖,在⊙O中,半徑OA⊥OB,過OA的中點C作FD∥OB交⊙O于D、F兩點,且CD=,以O為圓心,OC為半徑作弧CE,交OB于E點.
(1)求⊙O的半徑OA的長;
(2)計算陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象過點A(1,n),B(3,n),若點C(﹣1.y1),D(0,y2),E(6,y3)也在該二次函數(shù)圖象上,則下列結(jié)論正確的是( )
A.y1<y2<y3
B.y2<y1<y3
C.y3<y1<y2
D.y1<y3<y2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com