【題目】如圖,長方形ABCD中AD∥BC,邊AB=4,BC=8.將此長方形沿EF折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)G處.
(1)試判斷△BEF的形狀,并說明理由;
(2)若AE=3,求△BEF的面積.
【答案】(1)△BEF為等腰三角形,理由見解析;(2)10
【解析】
(1)根據(jù)平行線的性質(zhì)可得:∠DEF=∠EFB,然后根據(jù)折疊的性質(zhì)可得∠DEF=∠BEF,從而證出∠BEF=∠EFB,最后根據(jù)等角對等邊可證BE=BF,從而得出結(jié)論.
(2)根據(jù)矩形的性質(zhì)可得:∠A=90°,然后根據(jù)勾股定理即可求出BF=BE=5,最后根據(jù)三角形的面積公式計(jì)算即可.
解:(1)如圖,△BEF為等腰三角形;理由如下:
∵AD∥BC,
∴∠DEF=∠EFB
由折疊的性質(zhì)可得:∠DEF=∠BEF,
∴∠BEF=∠EFB,
∴BE=BF,
∴△BEF為等腰三角形.
(2)∵四邊形ABCD為矩形,
∴∠A=90°,
∵BE===5,
∴BF=BE=5,
∴△BEF的面積=×BF×AB=10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,邊長為的正方形的一個(gè)頂點(diǎn)在邊上,與另兩邊分
別交于點(diǎn)、,,將正方形平移,使點(diǎn)保持在上(不與重合),設(shè),正方形與重疊部分的面積為.
求與的函數(shù)關(guān)系式并寫出自變量的取值范圍;
為何值時(shí)的值最大?
在哪個(gè)范圍取值時(shí)的值隨的增大而減?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個(gè)層次,并繪制成如圖9的兩幅尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問題:
(1)這次調(diào)查一共抽取了 名學(xué)生;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)分別求出安全意識為“淡薄”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比、安全意識為“很強(qiáng)”的學(xué)生所在扇形的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,BD=DF,
(1)證明:CF=EB.
(2)證明:AB=AF+2EB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,邊AB、BC的長(AB<BC)是方程x2﹣7x+12=0的兩個(gè)根.點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿△ABC邊 A→B→C→A的方向運(yùn)動,運(yùn)動時(shí)間為t(秒).
(1)求AB與BC的長;
(2)當(dāng)點(diǎn)P運(yùn)動到邊BC上時(shí),試求出使AP長為時(shí)運(yùn)動時(shí)間t的值;
(3)當(dāng)點(diǎn)P運(yùn)動到邊AC上時(shí),是否存在點(diǎn)P,使△CDP是等腰三角形?若存在,請求出運(yùn)動時(shí)間t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)G,過點(diǎn)G作EF∥BC交AB于E,交AC于F,過點(diǎn)G作GD⊥AC于D,下列四個(gè)結(jié)論:
①EF=BE+CF;②∠BGC=90°+∠A;③點(diǎn)G到△ABC各邊的距離相等;④設(shè)GD=m,AE+AF=n,則S△AEF=mn.其中正確的結(jié)論有( )
A.①②④B.①③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的邊長為,點(diǎn)為上的一點(diǎn),點(diǎn)為上的一點(diǎn),
連結(jié)、,.
求證:①;②;
若,求和的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com