已知:拋物線y=ax2+bx+c(a>0)的圖象經(jīng)過點B(12,0)和C(0,-6),對稱軸為x=2.

(1)求該拋物線的解析式;
(2)點D在線段AB上且AD=AC,若動點P從A出發(fā)沿線段AB以每秒1個單位長度的速度勻速運(yùn)動,同時另一動點Q以某一速度從C出發(fā)沿線段CB勻速運(yùn)動,問是否存在某一時刻,使線段PQ被直線CD垂直平分?若存在,請求出此時的時間t(秒)和點Q的運(yùn)動速度;若不存在,請說明理由;
(3)在(2)的結(jié)論下,直線x=1上是否存在點M,使△MPQ為等腰三角形?若存在,請求出所有點M的坐標(biāo);若不存在請說明理由.

(1) y=x2x-6(2) (3)見解析

解析試題分析:(1)把點B、C的坐標(biāo)代入拋物線解析式,根據(jù)對稱軸解析式列出關(guān)于a、b、c的方程組,求解即可;(2)根據(jù)拋物線解析式求出點A的坐標(biāo),再利用勾股定理列式求出AC的長,然后求出OD,可得點D在拋物線對稱軸上,根據(jù)線段垂直平分線上的性質(zhì)可得∠PDC=∠QDC,PD=DQ,再根據(jù)等邊對等角可得∠PDC=∠ACD,從而得到∠QDC=∠ACD,再根據(jù)內(nèi)錯角相等,兩直線平行可得PQ∥AC,再根據(jù)點D在對稱軸上判斷出DQ是△ABC的中位線,根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出DQ=AC,再求出AP,然后根據(jù)時間=路程÷速度求出點P運(yùn)動的時間t,根據(jù)勾股定理求出BC,然后求出CQ,根據(jù)速度=路程÷時間,計算即可求出點Q的速度.(3)假設(shè)存在這樣的點M,使得△MPQ為等腰三角形,那么就需要要分類討論:①當(dāng)MP=MQ,即M為頂點;②;當(dāng)PQ為等腰△MPQ的腰時,且P為頂點;③當(dāng)PQ為等腰△MPQ的腰時,且Q為頂點.進(jìn)行分類求解即可.
試題解析:解:方法一:∵拋物線過C(0,-6)
∴c=-6, 即y=ax2+bx-6
 ,解得:a= ,b=-
∴該拋物線的解析式為y=x2x-6;
方法二:∵A、B關(guān)于x=2對稱
∴A(-8,0),設(shè)y=a(x+8)(x-12) 
C在拋物線上,∴-6=a×8×(-12) 即a=
∴該拋物線的解析式為:y=x2x-6.
(2)存在,設(shè)直線CD垂直平分PQ,
在Rt△AOC中,AC==10=AD
∴點D在對稱軸上,連結(jié)DQ 顯然∠PDC=∠QDC,
由已知∠PDC=∠ACD,
∴∠QDC=∠ACD,∴DQ∥AC,
DB=AB-AD=20-10=10
∴DQ為△ABC的中位線,∴DQ=AC=5.
AP=AD-PD=AD-DQ=10-5=5
∴t=5÷1=5(秒) 
∴存在t=5(秒)時,線段PQ被直線CD垂直平分,
在Rt△BOC中, BC==6 ∴CQ=3 
∴點Q的運(yùn)動速度為每秒單位長度.
(3)存在 過點Q作QH⊥x軸于H,則QH=3,PH=9
在Rt△PQH中,PQ==3.
①當(dāng)MP=MQ,即M為頂點,
設(shè)直線CD的直線方程為:y=kx+b(k≠0),則:
  ,解得:.
∴y=3x-6
當(dāng)x=1時,y=-3 , ∴M1(1, -3).
②當(dāng)PQ為等腰△MPQ的腰時,且P為頂點.
設(shè)直線x=1上存在點M(1,y) ,由勾股定理得:
42+y2=90  即y=±
∴M2(1,)   M3(1,-).
③當(dāng)PQ為等腰△MPQ的腰時,且Q為頂點.
過點Q作QE⊥y軸于E,交直線x=1于F,則F(1, -3)
設(shè)直線x=1存在點M(1,y), 由勾股定理得:
(y+3)2+52=90 即y=-3±
∴M4(1, -3+)   M5((1, -3-) .
綜上所述:存在這樣的五點:
M1(1, -3),  M2(1,),  M3(1,-),  M4(1, -3+),
M5((1, -3-)

考點:二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,關(guān)于x的二次函數(shù),(k為正整數(shù)).

(1)若二次函數(shù)的圖象與x軸有兩個交點,求k的值.
(2)若關(guān)于x的一元二次方程(k為正整數(shù))有兩個不相等的整數(shù)解,點A(m,y1),B(m+1,y2),C(m+2,y3)都在二次函數(shù)(k為正整數(shù))圖象上,求使y1≤y2≤y3成立的m的取值范圍.
(3)將(2)中的拋物線平移,當(dāng)頂點至原點時,直線y=2x+b交拋物線于A(-1,n)、B(2,t)兩點,問在y軸上是否存在一點C,使得△ABC的內(nèi)心在y軸上.若存在,求出點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y=x²-4x+3.
(1)該拋物線的對稱軸是       ,頂點坐標(biāo)               ;
(2)將該拋物線向上平移2個單位長度,再向左平移3個單位長度得到新的二次函數(shù)圖像,請寫出相應(yīng)的解析式,并用列表,描點,連線的方法畫出新二次函數(shù)的圖像;

x
 

 
 
 
 
 
 
 
 
 
 
 

 
y
 

 
 
 
 
 
 
 
 
 
 
 

 
 

(3)新圖像上兩點A(x1,y1),B(x2,y2),它們的橫坐標(biāo)滿足<-2,且-1<<0,試比較y1,y2,0三者的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

定義:把一個半圓與拋物線的一部分合成封閉圖形,我們把這個封閉圖形稱為“蛋圓”.如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖,A,B,C,D分別是“蛋圓”與坐標(biāo)軸的交點,已知點D的坐標(biāo)為(0,8),AB為半圓的直徑,半圓的圓心M的坐標(biāo)為(1,0),半圓半徑為3.

(1)請你直接寫出“蛋圓”拋物線部分的解析式          ,自變量的取值范圍是          ;
(2)請你求出過點C的“蛋圓”切線與x軸的交點坐標(biāo);
(3)求經(jīng)過點D的“蛋圓”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在平面直角坐標(biāo)系中,拋物線過點A(6,0)和點B(3,).

(1)求拋物線的解析式;
(2)將拋物線沿x軸翻折得拋物線,求拋物線的解析式;
(3)在(2)的條件下,拋物線上是否存在點M,使相似?如果存在,求出點M的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

一場籃球賽中,小明跳起投籃,已知球出手時離地面高米,與籃圈中心的水平距離為8米,當(dāng)球出手后水平距離為4米時到達(dá)最大高度4米,若籃球運(yùn)行的軌跡為拋物線,籃圈中心距離地面3米.

(1)建立如圖的平面直角坐標(biāo)系,求拋物線的解析式;
(2)問此球能否投中?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,用長為20米的籬笆恰好圍成一個扇形花壇,且扇形花壇的圓心角小于180°,設(shè)扇形花壇的半徑為米,面積為平方米.(注:的近似值取3)

(1)求出的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當(dāng)半徑為何值時,扇形花壇的面積最大,并求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,拋物線與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標(biāo)為(4,0).

(1)求該拋物線的解析式;
(2)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);
(3)若平行于x軸的動直線與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點O,頂點為C.
(1)求拋物線的函數(shù)解析式;
(2)求拋物線的對稱軸和C點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案