如圖,已知在△ABC中,DE∥BC,EF∥AB,AE=2CE,AB=6,BC=9.求:四邊形BDEF的周長(zhǎng).

【答案】分析:由題中條件可得四邊形DBFE是平行四邊形,再由平行線(xiàn)分線(xiàn)段成比例的性質(zhì)球的線(xiàn)段BD、DE的長(zhǎng),進(jìn)而即可求解其周長(zhǎng).
解答:解:∵DE∥BC,EF∥AB,
∴四邊形DBFE是平行四邊形,
∴EF=BD,DE=BF,
∵DE∥BC,
==,
∵AE=2CE,
===,
∴DE=6,AD=4,即BD=2,
∴四邊形BDEF的周長(zhǎng)=2(BD+DE)=2×(6+2)=16.
點(diǎn)評(píng):本題主要考查了平行四邊形的判定及性質(zhì)以及平行線(xiàn)分線(xiàn)段成比例的性質(zhì)問(wèn)題,應(yīng)能夠熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,已知在△ABC中,AD、AE分別是BC邊上的高和中線(xiàn),AB=9cm,AC=7cm,BC=8m,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,BD為∠ABC的平分線(xiàn),AB=BC,點(diǎn)P在BD上,PM⊥AD于M,PN⊥CD于N,求證:PM=PN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分線(xiàn).
(1)∠ADC=
60°
60°

(2)求證:BC=CD+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線(xiàn)交于點(diǎn)P.當(dāng)∠A=70°時(shí),則∠BPC的度數(shù)為
125°
125°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,CD=CE,∠A=∠ECB,試說(shuō)明CD2=AD•BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案