如圖1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,點D在邊AB的延長線上,BD=3,過點D作DE⊥AB,與邊AC的延長線相交于點E,以DE為直徑作⊙O交AE于點F.
(1)求⊙O的半徑及圓心O到弦EF的距離;
(2)連接CD,交⊙O于點G(如圖2).求證:點G是CD的中點.
【答案】分析:(1)根據(jù)勾股定理求出AC,證△ACB∽△ADE,得出==,代入求出DE=6,AE=10,過O作OQ⊥EF于Q,證△EQO∽△EDA,代入求出OQ即可;
(2)連接EG,求出EG⊥CD,求出CE=ED,根據(jù)等腰三角形的性質(zhì)求出即可.
解答:解:(1)∵∠ACB=90°,AB=5,BC=3,由勾股定理得:AC=4,
∵AB=5,BD=3,
∴AD=8,
∵∠ACB=90°,DE⊥AD,
∴∠ACB=∠ADE,
∵∠A=∠A,
∴△ACB∽△ADE,
==
==
∴DE=6,AE=10,
即⊙O的半徑為3;
過O作OQ⊥EF于Q,
則∠EQO=∠ADE=90°,
∵∠QEO=∠AED,
∴△EQO∽△EDA,
=
=,
∴OQ=2.4,
即圓心O到弦EF的距離是2.4;

(2)連接EG,
∵AE=10,AC=4,
∴CE=6,
∴CE=DE=6,
∵DE為直徑,
∴∠EGD=90°,
∴EG⊥CD,
∴點G為CD的中點.
點評:本題考查了圓周角定理,相似三角形的性質(zhì)和判定,等腰三角形性質(zhì)的應用,主要考查學生綜合運用性質(zhì)進行推理和計算的能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•和平區(qū)二模)如圖,在Rt△ABC中,∠BAC=90°,AB=6,AM為∠BAC的平分線,CM=2BM.下列結(jié)論:
①tan∠MAC=
2
2
;②點M到AB的距離是4;③
AC
CM
=
BC
CA
;④∠B=2∠C;⑤
CM
AB
=
2

其中不正確結(jié)論的序號是
①③④⑤
①③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遵義)如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,E為BC邊上的一點,以A為圓心,AE為半徑的圓弧交AB于點D,交AC的延長于點F,若圖中兩個陰影部分的面積相等,則AF的長為
2
π
π
2
π
π
(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=9cm,則AB的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線BD交AC于點D,DE⊥DB交AB于點E,設(shè)⊙O是△BDE的外接圓.
(1)求證:AC是⊙O的切線;
(2)若DE=2,BD=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)如圖,在Rt△ABC中,∠ACB=90°,點D在AC邊上,且BC2=CD•CA.
(1)求證:∠A=∠CBD;
(2)當∠A=α,BC=2時,求AD的長(用含α的銳角三角比表示).

查看答案和解析>>

同步練習冊答案