【題目】將點A(4,0)繞著原點O順時針方向旋轉60°角得到對應點A',則點A' 的坐標是 ( )
A. (4,-2)B. (2,)C. (2,)D. (,-2)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以點P(-1,0)為圓心的圓,交x軸于B、C兩點(B在C的左側),交y軸于A、D兩點(A在D的下方),AD=,將△ABC繞點P旋轉180°,得到△MCB.
(1)求B、C兩點的坐標;
(2)請在圖中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點M的坐標;
(3)動直線l從與BM重合的位置開始繞點B順時針旋轉,到與BC重合時停止,設直線l與CM交點為E,點Q為BE的中點,過點E作EG⊥BC于G,連接MQ、QG.請問在旋轉過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線經(jīng)過正方形的頂點,先分別過此正方形的頂點、作于點、于點.然后再以正方形對角線的交點為端點,引兩條相互垂直的射線分別與,交于,兩點.若,,則線段長度的最小值是___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BC是半⊙O的直徑,A是⊙O上一點,過點的切線交CB的延長線于點P,過點B的切線交CA的延長線于點E,AP與BE相交于點F.
(1)求證:BF=EF;
(2)若AF=,半⊙O的半徑為2,求PA的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解方程:(1) ; (2).
【答案】(1)x1 =1 ,x2=; (2) x1 =-1,x2= .
【解析】試題分析:
根據(jù)兩方程的特點,使用“因式分解法”解兩方程即可.
試題解析:
(1)原方程可化為: ,
方程左邊分解因式得: ,
或,
解得: , .
(2)原方程可化為: ,即,
∴,
∴或,
解得: .
【題型】解答題
【結束】
20
【題目】已知x1,x2是關于x的一元二次方程x2-2(m+1)x+m2+5=0的兩實根.
(1)若(x1-1)(x2-1)=28,求m的值;
(2)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個三角形的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC與△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,AC=BC=4,AD=DE,點F是BE的中點,連接DF,CF.
(1)如圖1,當點D在AB上,且點E是AC的中點時,求CF的長.
(2)如圖1,若點D落在AB上,點E落在AC上,證明:DF⊥CF.
(3)如圖2,當AD⊥AC,且E點落在AC上時,判斷DF與CF之間的關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線L:y=﹣(x﹣t)(x﹣t+4)(常數(shù)t>0)與x軸從左到右的交點為B,A,過線段OA的中點M作MP⊥x軸,交雙曲線y= (k>0,x>0)于點P,且OAMP=12,
(1)求k值;
(2)當t=1時,求AB的長,并求直線MP與L對稱軸之間的距離;
(3)把L在直線MP左側部分的圖象(含與直線MP的交點)記為G,用t表示圖象G最高點的坐標;
(4)設L與雙曲線有個交點的橫坐標為x,且滿足4x6,通過L位置隨t變化的過程,直接寫出t的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB⊥AC,過點D作DE⊥AD交直線AC于點E,點O是對角線AC的中點,點F是線段AD上一點,連接FO并延長交BC于點G.
(1)如圖1,若AC=4,cos∠CAD=,求△ADE的面積;
(2)如圖2,點H為DC是延長線上一點,連接HF,若∠H=30°,DE=BG,求證:DH=CE+FH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點是反比例函數(shù)的圖像上的一個動點,經(jīng)過點的直線交軸負半軸于點,交軸正半軸于點.過點作軸的垂線,交反比例函數(shù)的圖像于點.過點作軸于點,交于點,連接.設點的橫坐標是.
(1)若,求點的坐標(用含的代數(shù)式表示);
(2)若,當四邊形是平行四邊形時,求的值,并求出此時直線對應的函數(shù)表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com