【題目】如圖,在平面直角坐標(biāo)系中,四邊形OBCD是邊長(zhǎng)為4的正方形,BD分別在軸負(fù)半軸、軸正半軸上,點(diǎn)E軸的一個(gè)動(dòng)點(diǎn),連接CE,以CE為邊,在直線(xiàn)CE的右側(cè)作正方形CEFG

1)如圖1,當(dāng)點(diǎn)E與點(diǎn)O重合時(shí),請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo)為_______,點(diǎn)G的坐標(biāo)為_______

2)如圖2,若點(diǎn)E在線(xiàn)段OD上,且OE=1,求正方形CEFG的面積.

3)當(dāng)點(diǎn)E軸上移動(dòng)時(shí),點(diǎn)F是否在某條直線(xiàn)上運(yùn)動(dòng)?如果是,請(qǐng)求出相應(yīng)直線(xiàn)的表達(dá)式;如果不是,請(qǐng)說(shuō)明理由.

【答案】12 3)是, 理由見(jiàn)解析.

【解析】

1)利用四邊形OBCD是邊長(zhǎng)為4的正方形,正方形CEFG,的性質(zhì)可得答案,

2)利用勾股定理求解的長(zhǎng),可得面積,

3)分兩種情況討論,利用正方形與三角形的全等的性質(zhì),得到的坐標(biāo),根據(jù)坐標(biāo)得到答案.

解:(1 四邊形OBCD是邊長(zhǎng)為4的正方形,

正方形CEFG,

三點(diǎn)共線(xiàn),

故答案為:

2)由

正方形CEFG的面積

3)如圖,當(dāng)的左邊時(shí),作

正方形CEFG ,

四邊形OBCD是邊長(zhǎng)為4的正方形,

中,

設(shè)

+②得:

在直線(xiàn)上,

當(dāng)的右邊時(shí),同理可得:在直線(xiàn)上.

綜上:當(dāng)點(diǎn)E軸上移動(dòng)時(shí),點(diǎn)F是在直線(xiàn)上運(yùn)動(dòng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角形紙牌中,AB=8cm,BC=6cm,AC=5cm,沿著過(guò)△ABC的頂點(diǎn)B的直線(xiàn)折疊這個(gè)三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,則△AED周長(zhǎng)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】元旦期間,某商場(chǎng)設(shè)置了如圖所示的幸運(yùn)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)分成4個(gè)大小相同的扇形,分別標(biāo)有數(shù)學(xué)1,2,3,4,指針的位置固定,轉(zhuǎn)盤(pán)可以自由轉(zhuǎn)動(dòng),當(dāng)轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)停止后,其中的某個(gè)扇形會(huì)停在指針?biāo)傅奈恢茫ㄖ羔樦赶騼蓚(gè)扇形的交線(xiàn)時(shí),當(dāng)作右邊的扇形).商場(chǎng)規(guī)定:凡是參加抽獎(jiǎng)的顧客均可轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)兩次,如果兩次轉(zhuǎn)動(dòng)中指針指缶扇形上的數(shù)字之和為8是一等獎(jiǎng),數(shù)字之和為7是二等獎(jiǎng),數(shù)字之和為6是三等獎(jiǎng),標(biāo)號(hào)之和為其他數(shù)字則獲得一份紀(jì)念品,請(qǐng)分別求出顧客抽中一、二、三等獎(jiǎng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,ACBDP,EBC上一點(diǎn),AEBDF,若AB=AE,則下列結(jié)論:①AF=AP;②AE=FD;③BE=AF.正確的是______(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABDE,∠ABC800,∠CDE1400.請(qǐng)你探索出一種(只須一種)添加輔助線(xiàn)求出∠BCD度數(shù)的方法,并求出∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分10分)如圖,某大樓的頂部豎有一塊廣告牌CD,小明在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度,AB=10米,AE=15米.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):

1)求點(diǎn)B距水平面AE的高度BH;

2)求廣告牌CD的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)一種商品有大小兩種包裝,4 大盒、3 小盒共裝 116 瓶;3 大盒、2 小盒共裝 84 瓶,求大盒與小盒每盒各裝多少瓶?

2)一種商品有大中小三種包裝,4 大盒、2 中盒、3 小盒共裝 137 瓶;3 大盒、5 中盒、4 小盒共裝171 瓶,一個(gè)顧客買(mǎi)了這種商品大中小各兩盒,請(qǐng)問(wèn)這個(gè)顧客買(mǎi)了這種商品多少瓶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織初二年級(jí)400名學(xué)生到威海參加拓展訓(xùn)練活動(dòng),已知用3輛小客車(chē)和1輛大客車(chē)每次可運(yùn)送學(xué)生105人,用1輛小客車(chē)和2輛大客車(chē)每次可運(yùn)送學(xué)生110人.

(1)每輛小客車(chē)和每輛大客車(chē)各能坐多少名學(xué)生?

(2)若計(jì)劃租小客車(chē)m輛,大客車(chē)n輛,一次送完,且恰好每輛車(chē)都坐滿(mǎn):

①請(qǐng)你設(shè)計(jì)出所有的租車(chē)方案;

②若小客車(chē)每輛租金250元,大客車(chē)每輛租金350元,請(qǐng)選出最省線(xiàn)的租車(chē)方案,并求出最少租金.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)解不等式:

2)解下列不等式組,并把解集在數(shù)軸上表示出來(lái).

3)解不等式組,并求出不等式組的整數(shù)解.

4)因式分解

2a3b8ab3

6a(b-a) 22(a-b) 3

查看答案和解析>>

同步練習(xí)冊(cè)答案