【題目】如圖,一張三角形紙片ABC,其中∠BAC=60°,BC=6,點D是BC邊上一動點,將BD,CD翻折使得B′,C′分別落在AB,AC邊上,(B與B′,C與C′分別對應(yīng)),點D從點B運動至點C,△B′C′D面積的大小變化情況是( 。
A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小
【答案】D
【解析】
作B′H⊥DC′于H.設(shè)BD=DB′=x,則CD=DC′=6﹣x.由折疊得性質(zhì)可求出∠B′DC′=60°,從而利用銳角三角函數(shù)知識表示出B′H的值,然后根據(jù)三角形的面積公式列出函數(shù)關(guān)系式解答即可.
如圖,作B′H⊥DC′于H.設(shè)BD=DB′=x,則CD=DC′=6﹣x.
∵∠A=60°,
∴∠B+∠C=120°,
由翻折不變性可知:∠B=∠DB′B,∠C=∠DC′C,
∴∠BDB′+∠CDC′=120°,
∴∠B′DC′=60°,
∴B′H=sin60x=x,
∴S△DB′C′=x(6﹣x)=﹣(x﹣3)2+,
∴S△DB′C′的值先增大后減小,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】炮彈的運行軌道若不計空氣阻力是一條拋物線.現(xiàn)測得我軍炮位A與射擊目標(biāo)B的水平距離為600m,炮彈運行的最大高度為1200m.
(1)求此拋物線的解析式;
(2)若在A、B之間距離A點500m處有一高350m的障礙物,計算炮彈能否越過障礙物.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠B=∠C=65°,BD=CE,BE=CF,若∠A=50°,則∠DEF的度數(shù)是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點D是AB的中點,連接CD,過B作BE⊥CD交CD的延長線于點E,連接AE,過A作AF⊥AE交CD于點F.
(1)求證:AE=AF;
(2)求證:CD=2BE+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場要建一個飼養(yǎng)場(矩形ABCD)兩面靠現(xiàn)有墻(AD位置的墻最大可用長度為27米,AB位置的墻最大可用長度為15米),另兩邊用木欄圍成,中間也用木欄隔開,分成兩個場地及一處通道,并在如圖所示的三處各留1米寬的門(不用木欄)。建成后木欄總長45米。設(shè)飼養(yǎng)場(矩形ABCD)的一邊AB長為x米.
(1)飼養(yǎng)場另一邊BC= 米(用含x的代數(shù)式表示).
(2)若飼養(yǎng)場的面積為180平方米,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校“體育課外活動興趣小組”,開設(shè)了以下體育課外活動項目:A.足球 B.乒乓球C.羽毛球 D.籃球,為了解學(xué)生最喜歡哪一種活動項目,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計圖中“D”對應(yīng)的圓心角的度數(shù)為 ;
(2)請你將條形統(tǒng)計圖補充完整;
(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加市里組織的乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,添加下列條件能使△ABD≌△ACD的是( )
①AB=AC;②AB=AD;③∠ADB=90°;④BD=CD.
A.①②③B.①②④C.①③D.①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com