【題目】下列命題中真命題的個數(shù)是(

①平面內(nèi),過一點有且只有一條直線與已知直線平行;②5個數(shù)中有2個是無理數(shù);③若,則點P(-m,5)在第一象限;④的算術(shù)平方根是4;⑤經(jīng)過一點有且只有一條直線與已知直線垂直;⑥同旁內(nèi)角互補.

A.2B.3C.4D.5

【答案】A

【解析】

根據(jù)平行、垂直、無理數(shù)、坐標(biāo)系、算術(shù)平方根和同旁內(nèi)角分別判斷即可.

解:①平面內(nèi),過直線外一點有且只有一條直線與已知直線平行,故本題說法錯誤;

5個數(shù)中只有2個是無理數(shù),說法正確;

③若,則點P(-m,5)在第一象限,說法正確;

的算術(shù)平方根是2,故本題說法錯誤;

⑤在同一平面內(nèi),經(jīng)過一點有且只有一條直線與已知直線垂直,故本題說法錯誤;

⑥兩直線平行,同旁內(nèi)角互補,故本題說法錯誤;

故只有2個是真命題;

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線分別交x軸,y軸于A,B兩點,點COB的中點,點D在第二象限,且四邊形AOCD為矩形(有一個角是直角的平行四邊形).

1)直接寫出點A,B的坐標(biāo),并求直線ABCD交點E的坐標(biāo);

2)動點P從點C出發(fā),沿線段CD以每秒1個單位長度的速度向終點D運動;同時動點N從點A出發(fā),沿線段AO以每秒1個單位長度的速度向終點O運動,過點PPHOA,垂足為H,連接NP.設(shè)點P的運動時間為t秒.

NPH的面積為1,求t的值;

Q是點B關(guān)于點A的對稱點,問BPPHHQ是否有最小值,如果有,直接寫出相應(yīng)的點P的坐標(biāo);如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在矩形紙片ABCD中,AB= +1,AD=

(1)如圖②,將矩形紙片向上方翻折,使點D恰好落在AB邊上的D′處,壓平折痕交CD于點E,則折痕AE的長為
(2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點F,則四邊形B′FED′的面積為
(3)如圖④,將圖②中的△AED′繞點E順時針旋轉(zhuǎn)α角,得△A′ED″,使得EA′恰好經(jīng)過頂點B,求弧D′D″的長 . (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小云想用7天的時間背誦若干首詩詞,背誦計劃如下:

將詩詞分成4組,第i組有首,i =12,3,4;

對于第i組詩詞,第i天背誦第一遍,第()天背誦第二遍,第()天背誦第三遍,三遍后完成背誦,其它天無需背誦,1,2,34;

1

2

3

4

5

6

7

1

2

3

4

每天最多背誦14首,最少背誦4首.

解答下列問題:

1)填入補全上表;

2)若,,,則的所有可能取值為______;

37天后,小云背誦的詩詞最多為______首.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,則∠C的度數(shù)為( )

A.150°
B.130°
C.120°
D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點E,F分別在ABCD上,AFCE,垂足為點O,∠1=∠B,

A+290°.求證:ABCD

證明:如圖,

∵∠1=∠B(已知)

CEBF(同位角相等,兩直線平行)

______________

∴∠AFC+290°(等式性質(zhì))

∵∠A+290°(已知)

∴∠AFC=∠A(同角或等角的余角相等)

ABCD(內(nèi)錯角相等,兩直線平行)

請你仔細(xì)觀察下列序號所代表的內(nèi)容:

①∴∠AOE90°(垂直的定義)

②∴∠AFB90°(等量代換)

③∵AFCE(已知)

④∵∠AFC+AFB+2180°(平角的定義)

⑤∴∠AOE=∠AFB(兩直線平行,同位角相等)

橫線處應(yīng)填寫的過程,順序正確的是( 。

A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,Aa,b)、Bc,d)、C70),且

1)如果a1,d2

①求A,B兩點的坐標(biāo);

②求線段ABy軸交點N的坐標(biāo),并求出AOB的面積;

2)如果b1,且AOBABC面積和為9,求a的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),正方形ABCD中的頂點B,D的坐標(biāo)分別是(0,0),(2,0),且A,C兩點關(guān)于x軸對稱,則C點對應(yīng)的坐標(biāo)是( )

A.(1,1)
B.(1,﹣1)
C.(1,﹣2)
D.(2,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電商場計劃用9萬元從生產(chǎn)廠家購進(jìn)50臺電視機(jī),已知該廠家生產(chǎn)3種不同型號的電視機(jī),出廠價分別為A種每臺1500元,B種每臺2100元,C種每臺2500元.

1)若家電商場同時購進(jìn)兩種不同型號的電視機(jī)共50臺,用去9萬元,請你計算一下商場有哪幾種進(jìn)貨方案?

2)若商場銷售一臺A種電視機(jī)可獲利150元,銷售一臺B種電視機(jī)可獲利200元,銷售一臺C種電視機(jī)可獲利250元,在同時購進(jìn)兩種不同型號的電視機(jī)方案中,為了使銷售時獲利最多,應(yīng)選擇哪種方案?

查看答案和解析>>

同步練習(xí)冊答案