【題目】如圖,在△ABC中,已知AB=AC,∠BAC=90°,BC=10cm,直線CM⊥BC,動(dòng)點(diǎn)D從點(diǎn)C開始沿射線CB方向以每秒3厘米的速度運(yùn)動(dòng),動(dòng)點(diǎn)E也同時(shí)從點(diǎn)C開始在直線CM上以每秒2厘米的速度運(yùn)動(dòng),連接AD、AE,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求AB的長;(2)當(dāng)t為多少時(shí),△ABD的面積為15cm2?
(3)當(dāng)t為多少時(shí),△ABD≌△ACE,并簡要說明理由.(請?jiān)趥溆脠D中畫出具體圖形)
【答案】(1)5;(2)2或8; (3)2或10.
【解析】試題分析:(1)運(yùn)用勾股定理直接求出;(2)首先求出△ABD中BD邊上的高,然后根據(jù)面積公式列出方程,求出BD的值,分兩種情況分別求出t的值;(3)假設(shè)△ABD≌△ACE,根據(jù)全等三角形的對應(yīng)邊相等得出BD=CE,分別用含t的代數(shù)式表示CE和BD,得到關(guān)于t的方程,從而求出t的值.
試題解析:(1)∵在△ABC中,AB=AC,∠BAC=90°,
∴2AB2=BC2,
∴AB==5cm;
(2)過A作AF⊥BC交BC于點(diǎn)F,
則AF=BC=5cm,
∵S△ABD=15cm2,
∴AF×BD=30,
∴BD=6cm.
若D在B點(diǎn)右側(cè),則CD=4cm,t=2s;
若D在B點(diǎn)左側(cè),則CD=16cm,t=8s.
(3)動(dòng)點(diǎn)E從點(diǎn)C沿射線CM方向運(yùn)動(dòng)2秒或當(dāng)動(dòng)點(diǎn)E從點(diǎn)C沿射線CM的反向延長線方向運(yùn)動(dòng)6秒時(shí),△ABD≌△ACE.
理由如下:(說理過程簡要說明即可)
①當(dāng)E在射線CM上時(shí),D必在CB上,則需BD=CE.
∵CE=2t,BD=10﹣3t
∴2t=10﹣3t
∴t=2
證明:在△ABD和△ACE中,
∵,
∴△ABD≌△ACE(SAS).
②當(dāng)E在CM的反向延長線上時(shí),D必在CB延長線上,則需BD=CE.
∵CE=2t,BD=3t﹣10,
∴2t=3t﹣10,
∴t=10
證明:在△ABD和△ACE中,
∴△ABD≌△ACE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016浙江省溫州市第22題)有甲、乙、丙三種糖果混合而成的什錦糖100千克,其中各種糖果的單價(jià)和千克數(shù)如表所示,商家用加權(quán)平均數(shù)來確定什錦糖的單價(jià).
甲種糖果 | 乙種糖果 | 丙種糖果 | |
單價(jià)(元/千克) | 15 | 25 | 30 |
千克數(shù) | 40 | 40 | 20 |
(1)求該什錦糖的單價(jià).
(2)為了使什錦糖的單價(jià)每千克至少降低2元,商家計(jì)劃在什錦糖中加入甲、丙兩種糖果共100千克,問其中最多可加入丙種糖果多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雅麗服裝廠童裝車間有40名工人,縫制一種兒童套裝(一件上衣和兩條褲子配成一套)。已知1名工人一天可縫制童裝上衣3件或褲子4件,問怎樣分配工人才能使縫制出來的上衣和褲子恰好配套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016浙江省舟山市第9題)如圖,矩形ABCD中,AD=2,AB=3,過點(diǎn)A,C作相距為2的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則DE的長是( )
A. B. C.1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算中,正確的個(gè)數(shù)有( )
①3x3·(-2x2)=-6x5 ②4a3b÷(-2a2b)=-2a
③(a3)2=a5 ④(-a)3÷(-a)=-a2
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com