【題目】如圖,在中,,,點DAB的中點,點EAC上一點,把沿DE折疊得到,連接.若,則的長為(

A.B.C.4D.

【答案】D

【解析】

過點AAFDE于點F,由直角三角形的性質(zhì)可得AF=1AE=,即可求A'E,EC的長,由勾股定理可求A'C的長.

解:如圖,過點AAFDE于點F,

AB=4,點DAB的中點,

AD=2,

∵∠ADE=30°,AFDE,

AF=1,∠FAD=60°,

∵∠BAC=105°,

∴∠FAE=45°,AFDE,

∴∠AEF=45°=EAF

AF=EF=1,

AE=

EC=AC-AE=2,

∵把△ADE沿DE折疊得到△A'DE,

∴∠AEA'=2AEF=90°,A'E=AE=,

A'C=,

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是( 。

A. 當(dāng)m=﹣3時,函數(shù)圖象的頂點坐標(biāo)是(,

B. 當(dāng)m>0時,函數(shù)圖象截x軸所得的線段長度大于

C. 當(dāng)m≠0時,函數(shù)圖象經(jīng)過同一個點

D. 當(dāng)m<0時,函數(shù)在x>時,yx的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2bxc圖象的一部分,圖象過點A(-3,0),對稱軸為直線x=-1給出四個結(jié)論b24ac;2ab0;abc0若點B(-,y1),C(-,y2為函數(shù)圖象上的兩點y1y2其中正確結(jié)論是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4米.

(1)求新傳送帶AC的長度;

(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計算結(jié)果精確到0.1米,參考數(shù)據(jù):1.41,1.73,2.24,2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A,C分別在x軸,y軸上,四邊形ABCO為矩形,AB=16,AC=20,D與點A關(guān)于y軸對稱,點E、F分別是線段AD、AC上的動點(點E不與點A、D重合),且∠CEF=ACB.

1)直接寫出BC的長是   D的坐標(biāo)是   ;

2)證明:AEFDCE相似;

3)當(dāng)EFC為等腰三角形時,求點E的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】華為手機與蘋果手機受消費者喜愛,某商戶每周都用25000元購進250張華為手機殼和150張?zhí)O果手機殼.

1)商戶在第一周銷售時,每張華為手機殼的售價比每張?zhí)O果手機殼的售價的2倍少10元,且兩種手機殼在一周之內(nèi)全部售完,總盈利為5000元,商戶銷售蘋果手機殼的價格每張多少元?

2)商戶在第二周銷售時,受到各種因素的影響,每張華為手機殼的售價比第一周每張華為手機殼的售價增加,但華為手機殼的銷售量比第一周華為手機殼的銷售量下降了a%;每張?zhí)O果手機殼的售價比第一周每張?zhí)O果手機殼的售價下降了a%,但蘋果手機殼銷售量與第一周蘋果手機殼銷售量相同,結(jié)果第二周的總銷售額為30000元,求a)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yk1x+b的圖象經(jīng)過A0,﹣2),B(﹣1,0)兩點,與反比例函數(shù)與反比例函數(shù)y的圖象在第一象限內(nèi)的交點為Mm,4).

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)求AOM的面積;

3)在x軸上是否存在點P,使AMMP?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A34),B5,0),連結(jié)AO,AB.點C是線段AO上的動點(不與AO重合),連結(jié)BC,以BC為直徑作⊙H,交x軸于點D,交AB于點E,連結(jié)CDCE,過EEFx軸于F,交BCG

1AO的長為   ,AB的長為   (直接寫出答案)

2)求證:ACE∽△BEF

3)若圓心H落在EF上,求BC的長;

4)若CEG是以CG為腰的等腰三角形,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一種落地晾衣架如圖1所示,其原理是通過改變兩根支撐桿夾角的度數(shù)來調(diào)整晾衣桿的高度. 2是支撐桿的平面示意圖,ABCD分別是兩根不同長度的支撐桿,夾角∠BOD=. AO=85cmBO=DO=65cm. : 當(dāng),較長支撐桿的端點離地面的高度約為_____.(參考數(shù)據(jù):,.)

查看答案和解析>>

同步練習(xí)冊答案