如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,OB=,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點(diǎn)O與點(diǎn)D重合,折痕為BC.
(1)求直線BC的解析式;
(2)求經(jīng)過B,C,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;若拋物線的頂點(diǎn)為M,試判斷點(diǎn)M是否在直線BC上,并說明理由.

【答案】分析:(1)根據(jù)題意易得∠OBC=∠DBC=30°,進(jìn)而在Rt△COB可得C的坐標(biāo),又有B的坐標(biāo);進(jìn)而可得BC的解析式;
(2)在Rt△AOB可得OA的長(zhǎng),即可得A的坐標(biāo);將ABC的坐標(biāo)代入解析式方程可得abc的值,進(jìn)而可得拋物線的解析式;將M的坐標(biāo)代入判斷其是否在拋物線上.
解答:解:(1)∵∠OBC=∠DBC=∠OBA=×(90°-30°)=30°
∴在Rt△COB中,OC=OB•tan30°==1
∴點(diǎn)C的坐標(biāo)為(1,0)(2分)
又點(diǎn)B的坐標(biāo)為(0,
∴設(shè)直線BC的解析式為y=kx+
∴0=k+,
∴k=-
則直線BC的解析式為:y=-x+;(4分)

(2)∵在Rt△AOB中,OA==3
∴A(3,0),
又∵B(0,),C(1,0)
(7分)
解之得:a=,b=-,c=
∴所求拋物線的解析式為y=x2-x+(8分)
配方得:y=(x-2)2-
∴頂點(diǎn)為(9分)
把x=2代入y=-x+,得:y=-≠-,
∴頂點(diǎn)M不在直線BC上.(10分)
點(diǎn)評(píng):本題考查學(xué)生將二次函數(shù)的圖象與解析式相結(jié)合處理問題、解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,OB=
3
,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點(diǎn)O與點(diǎn)D重合,折痕為BC.
(1)求直線BC的解析式;
(2)求經(jīng)過B,C,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;若拋物線的頂點(diǎn)為M,試判斷點(diǎn)M是否在直線BC上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸正半軸上,點(diǎn)B在y軸正半軸上,OB=2
3
,∠OAB=30°,將Rt△AOB折疊,使OB邊落在AB邊上,點(diǎn)O與點(diǎn)D重合,折精英家教網(wǎng)痕為BE.
(1)求點(diǎn)E和點(diǎn)D的坐標(biāo);
(2)求經(jīng)過O、D、A三點(diǎn)的二次函數(shù)圖象的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的三角形紙片,點(diǎn)O與原點(diǎn)精英家教網(wǎng)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上OB=
3
,∠BAO=30°,將Rt△AOB折疊,使OB邊落在AB邊上,點(diǎn)O與點(diǎn)D重合,折痕為BE.
(1)求點(diǎn)E和點(diǎn)D的坐標(biāo);
(2)求經(jīng)過O、D、A三點(diǎn)的二次函數(shù)解析式;
(3)設(shè)直線BE與(2)中二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)F,M為OF中點(diǎn),N為AF中點(diǎn),在x軸上是否存在點(diǎn)P,使△PMN的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸正半軸上,點(diǎn)B在y軸正半軸上,數(shù)學(xué)公式,∠OAB=30°,將Rt△AOB折疊,使OB邊落在AB邊上,點(diǎn)O與點(diǎn)D重合,折痕為BE.
(1)求點(diǎn)E和點(diǎn)D的坐標(biāo);
(2)求經(jīng)過O、D、A三點(diǎn)的二次函數(shù)圖象的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:山東省中考真題 題型:解答題

如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,OB=,∠BAO=30度,將Rt△AOB折疊,使BO邊落在BA邊上,點(diǎn)O與點(diǎn)D重合,折痕為BC。

(1)求直線BC的解析式;
(2)求經(jīng)過B,C,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;若拋物線的頂點(diǎn)為M,試判斷點(diǎn)M是否在直線BC上,并說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案