【題目】細(xì)心的小明發(fā)現(xiàn),一元二次方程ax2+bx+c0a0)根與系數(shù)之間的“秘密”關(guān)系.

1)當(dāng)x1時(shí)有a+b+c0,當(dāng)x=﹣1時(shí)有ab+c0.若9a+c3b,求x

2)若2a+b0,3a+c0,寫出滿足條件的一個(gè)一元二次方程,并求另一個(gè)根;

3)當(dāng)老師寫出方程2x23x10,要求不解方程判斷根的情況時(shí),小明立即回答,有兩個(gè)不相等的實(shí)數(shù)根.據(jù)此,你能根據(jù)一元二次方程系數(shù)a、b、c的符號(hào)以及相互之間的數(shù)量關(guān)系,寫出一些關(guān)于一元二次方程ax2+bx+c0a0)根與系數(shù)之間的規(guī)律嗎?請(qǐng)寫一寫(至少兩條).

【答案】(1)x=﹣32x2-3x-4=0;x24;(3)見解析.

【解析】

1)直接通過觀察對(duì)比可得出答案.

2)由題意可知一個(gè)根為-1,再舉例即可.

3)根據(jù)根的判別式和韋達(dá)定理解答即可.

1)∵9a+c3b,

9a3b+c0,

x=﹣3

2)∵

②﹣①得:ab+c0,

x=﹣1,

符合條件的方程可以為:x23x40

x4)(x+1)=0,

x14,x2=﹣1

32x23x10,

因?yàn)?/span>a2c=﹣1,可知:ac0

∴△=b24ac0,

根據(jù)一元二次方程系數(shù)a、b、c的符號(hào)以及相互之間的數(shù)量關(guān)系,有:①當(dāng)ac異號(hào)時(shí),△>0,方程有兩個(gè)不相等的實(shí)根;

②設(shè)方程ax2+bx+c0的兩根x1、x2,滿足x1+x2,x1x2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABC的三邊為邊分別作等邊ACDABE、BCF。

(1)求證:EBF≌△DFC;

(2)求證:四邊形AEFD是平行四邊形;

(3)①△ABC滿足_____________________時(shí),四邊形AEFD是菱形。(無需證明)

②△ABC滿足_______________________時(shí),四邊形AEFD是矩形。(無需證明)

③△ABC滿足_______________________時(shí),四邊形AEFD是正方形。(無需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3交x軸于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0).

(1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;

(2)如圖2,該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為F,點(diǎn)D(2,3)在該拋物線上.

①求四邊形ACFD的面積;

②點(diǎn)P是線段AB上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),過點(diǎn)P作PQ⊥x軸交該拋物線于點(diǎn)Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時(shí),求出所有滿足條件的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有七張正面分別標(biāo)有數(shù)字﹣1、﹣2、0、12、34的卡片,除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中隨機(jī)抽取一張,記卡片上的數(shù)字為m,則使關(guān)于x的方程x22m1x+m23m0有實(shí)數(shù)根,且不等式組無解的概率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校對(duì)九年級(jí)學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,被抽到的學(xué)生從物理、化學(xué)、生物、地理、歷史和政治這六科中選出自己最喜歡的科目,將調(diào)查數(shù)據(jù)匯總整理后,繪制了兩幅不同的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:

1)被抽查的學(xué)生共有多少人?求出地理學(xué)科所在扇形的圓心角;

2)將折線統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校九年級(jí)學(xué)生約2000人請(qǐng)你估算喜歡物理學(xué)科的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點(diǎn),連接OA,過AABx軸,截取AB=OA(BA右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點(diǎn)P.

(1)求反比例函數(shù)y=的表達(dá)式;

(2)求點(diǎn)B的坐標(biāo);

(3)求OAP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.

(1)求證:ABD∽△CED.

(2)若AB=6,AD=2CD,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對(duì)稱軸為直線x=﹣1的拋物線yax2+bx+ca≠0)與x軸相交于A,B兩點(diǎn).

1)若點(diǎn)A的坐標(biāo)為(﹣4,0),求點(diǎn)B的坐標(biāo).

2)若已知a1,點(diǎn)A的坐標(biāo)為(﹣3,0),C為拋物線與y軸的交點(diǎn).

①若點(diǎn)P在拋物線上,且SPOC4SBOC,求點(diǎn)P的坐標(biāo);

②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QDx軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點(diǎn)E在邊BC上,將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,聯(lián)結(jié)FC,當(dāng)EFC是直角三角形時(shí),那么BE的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案