如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn)分別在軸,軸的正半軸上,且滿足

(1)求點(diǎn),點(diǎn)的坐標(biāo).

(2)若點(diǎn)點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿射線運(yùn)動(dòng),連結(jié).設(shè)的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,求的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

(3)在(2)的條件下,是否存在點(diǎn),使以點(diǎn)為頂點(diǎn)的三角形與相似?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

(1)A(1,0),B(0,)(2)(3);;

【解析】解:(1)

,······················· (1分)

,

點(diǎn),點(diǎn)分別在軸,軸的正半軸上

··························· (2分)

(2)求得························· (3分)

(每個(gè)解析式各1分,兩個(gè)取值范圍共1分)················ (6分)

(3);;(每個(gè)1分,計(jì)4分)

(1)根據(jù)條件,可求得OB=,OA=1,根據(jù)圖象可知A(1,0),B(0, );

(2)在直角三角形中的勾股定理和動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間和速度分別把相關(guān)的線段表示出來(lái),設(shè)CP=t,過(guò)P作PQ⊥CA于Q,由△CPQ∽△CBO,易得PQ=,S=SABC-SAPC=-t

(3)由于∠ABP=∠AOB=90°,所以分兩種情況討論:①△ABP∽△AOB;②△ABP∽△BOA.可知滿足條件的有四個(gè).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案