【題目】如圖,在平行四邊形ABCD中,點E、F分別在BC、AD上,且BAE=DCF

(1)求證:ABE≌△CDF;

(2)若ACEF,試判斷四邊形AECF是什么特殊四邊形,并證明你的結(jié)論

【答案】(1)證明見解析;(2)四邊形AECF是菱形,證明見解析

【解析】

試題分析:(1)由平行四邊形ABCD可得B=D,AB=CD,根據(jù)已知給出的BAE=DCF,可證明兩個三角形全等

(2)可先確定四邊形AECF中對角線的關(guān)系,再根據(jù)ACEF,從而判斷出到底是什么特殊的四邊形

試題解析:(1)在平行四邊形ABCD中,∴∠B=D,AB=CD,又∵∠BAE=DCF∴△ABE≌△CDF;

(2)四邊形AECF是菱形證明如下:

∵△ABE≌△CDF,BE=DF,BCBE=ADFD,EC=AF,ADBC,∴∠FAC=ECA,CEF=AFE,∴△AOF≌△COE,AO=CO,EO=FO,又ACEF,四邊形AECF是菱形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列關(guān)于自然數(shù)的式子:4×1212,4×2232,4×3252,……,根據(jù)上述規(guī)律,則第2019個式子的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,CD⊥AB于點D,CD=BD,BE平分∠ABC,點H是BC邊的中點,連接DH,交BE于點G,連接CG.
(1)求證:△ADC≌△FDB;
(2)求證:CE= BF;
(3)判斷△ECG的形狀,并證明你的結(jié)論;
(4)猜想BG與CE的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E,F(xiàn)分別在BC和CD上,下列結(jié)論: ①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+
其中正確的序號是(把你認為正確的都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(1)班學(xué)生在完成課題學(xué)習(xí)體質(zhì)健康測試中的數(shù)據(jù)分析后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓(xùn)練,訓(xùn)練后都進行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.

請你根據(jù)上面提供的信息回答下列問題:

1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學(xué)生 人,訓(xùn)練后籃球定時定點投籃平均每個人的進球數(shù)是

2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知m,n滿足等式(m﹣8)2+2|n﹣m+5|=0.
(1)求m,n的值;
(2)已知線段AB=m,在直線AB上取一點P,恰好使AP=nPB,點Q為PB的中點,求線段AQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某梯形上底長、下底長分別是x,y,高是6,面積是24,則y與x之間的關(guān)系式是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB內(nèi)部有三條射線,OE平分∠BOC,OF平分∠AOC.

(1)若∠AOB=90°,∠AOC=40°,求∠EOF的度數(shù);
(2)若∠AOB=a,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形的兩邊、分別在軸、軸的正半軸上,反比例函數(shù)>0)與相交于點,與相交于點,若,且的面積是5,則的值為_______

查看答案和解析>>

同步練習(xí)冊答案