【題目】現有2019條直線且有…,則直線與的位置關系是___________.
【答案】垂直.
【解析】
根據兩直線平行,同位角相等得出相等的角,再根據垂直的定義解答,進而得出規(guī)律:a1與其它直線的位置關系為每4個一循環(huán),垂直、垂直、平行、平行,根據此規(guī)律即可判斷.
先判斷直線a1與a3的位置關系是:a1⊥a3.
理由如下:如圖1,∵a1⊥a2,
∴∠1=90°,
∵a2∥a3,
∴∠2=∠1=90°,
∴a1⊥a3;
再判斷直線a1與a4的位置關系是:a1∥a4,如圖2;
∵直線a1與a3的位置關系是:a1⊥a3,
直線a1與a4的位置關系是:a1∥a4,
∵2019÷4=504…3,
∴直線a1與a2015的位置關系是:垂直.
故答案為:垂直.
科目:初中數學 來源: 題型:
【題目】為了迎接阜陽九中校園文化藝術節(jié)的召開,現要從七、八年級學生中抽調人參加 “校園集體舞”、“廣播體操”、“唱紅歌”等訓練活動,其中參加 “校園集體舞”人數是抽調人數的還多3人,參加“廣播體操”活動人數是抽調人數的少2人,其余的參加“唱紅歌”活動,若抽調的每個學生只參加了一項活動。
(1)求參加“唱紅歌”活動的人數。(用含的式子表示)
(2)求參加“廣播體操”比參加 “校園集體舞蹈”多的人數。(用含的式子表示)
(3)求當=84時,參加“廣播體操比賽” 的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某運動品牌店對第一季度A、B兩款運動鞋的銷售情況進行統(tǒng)計.兩款運動鞋的銷售量及總銷售額如圖所示:
(1)一月份B款運動鞋的銷售量是A款的 ,則一月份B款運動鞋銷售了多少雙?
(2)第一節(jié)度這兩款運動鞋的銷售單價保持不變,求三月份的總銷售額(銷售額=銷售單價×銷售量);
(3)綜合第一季度的銷售情況,請你對這兩款運動鞋的進貨、銷售等方面提出一條建議.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題提出
(1)如圖①,已知△ABC,請畫出△ABC關于直線AC對稱的三角形.
(2)問題探究
如圖②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點G、H,使得四邊形EFGH的周長最小?若存在,求出它周長的最小值;若不存在,請說明理由.
(3)如圖③,有一矩形板材ABCD,AB=3米,AD=6米,現想從此板材中裁出一個面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,經研究,只有當點E、F、G分別在邊AD、AB、BC上,且AF<BF,并滿足點H在矩形ABCD內部或邊上時,才有可能裁出符合要求的部件,試問能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從﹣3,﹣1, ,1,3這五個數中,隨機抽取一個數,記為a,若數a使關于x的不等式組 無解,且使關于x的分式方程 =﹣1有整數解,那么這5個數中所有滿足條件的a的值之和是( )
A.﹣2
B.﹣3
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(_____________________)
且∠1=∠CGD(____________________)
∴∠2=∠CGD(___________________)
∴CE∥BF(_______________________)
∴∠_______=∠C(兩直線平行,同位角相等)
又∵∠B=∠C(已知),
∴∠BFD=∠B
∴AB∥CD(____________________)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料: 如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當x=﹣3或1時,y1=y2;
②當﹣3<x<0或x>1時,y1>y2 , 即通過觀察函數的圖象,可以得到不等式ax+b> 的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學根據學習以上知識的經驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.
下面是他的探究過程,請將(2)、(3)、(4)補充完整:
⑴將不等式按條件進行轉化:
當x=0時,原不等式不成立;
當x>0時,原不等式可以轉化為x2+4x﹣1> ;
當x<0時,原不等式可以轉化為x2+4x﹣1< ;
⑵構造函數,畫出圖象
設y3=x2+4x﹣1,y4= ,在同一坐標系中分別畫出這兩個函數的圖象.
雙曲線y4= 如圖2所示,請在此坐標系中畫出拋物線y3=x2+4x﹣1 ;(不用列表)
⑶確定兩個函數圖象公共點的橫坐標
觀察所畫兩個函數的圖象,猜想并通過代入函數解析式驗證可知:滿足y3=y4的所有x的值為;
⑷借助圖象,寫出解集
結合(1)的討論結果,觀察兩個函數的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,二次函數y=ax2+bx+3 經過點A(3,0),G(﹣1,0)兩點.
(1)求這個二次函數的解析式;
(2)若點M時拋物線在第一象限圖象上的一點,求△ABM面積的最大值;
(3)拋物線的對稱軸交x軸于點P,過點E(0, )作x軸的平行線,交AB于點F,是否存在著點Q,使得△FEQ∽△BEP?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com