精英家教網 > 初中數學 > 題目詳情

【題目】如圖,∠MON=30°,點A1 , A2 , A3 , …在射線ON上,點B1 , B2 , B3 , …在射線OM上,△A1B1A2 , △A2B2A3 , △A3B3A4…均為等邊三角形.若OA1=1,則△AnBnAn+1的邊長為

【答案】2n1
【解析】解:∵△A1B1A2是等邊三角形, ∴A1B1=A2B1 , ∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°﹣120°﹣30°=30°,
又∵∠3=60°,
∴∠5=180°﹣60°﹣30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等邊三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3 , B1A2∥B2A3
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2 , B3A3=2B2A3 ,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此類推:△AnBnAn+1的邊長為 2n1
故答案是:2n1

【考點精析】通過靈活運用等邊三角形的性質,掌握等邊三角形的三個角都相等并且每個角都是60°即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】分解因式:m2n﹣2mn+n= .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】x2–3x+m可分解為(x+3)(x+n),則m =_______n=_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC的∠ABC和∠ACB的平分線BE,CF交于點G,若∠BGC=115°,則∠A=

【答案】50°

【解析】

試題分析:根據三角形內角和定理求出∠GBC+∠GCB,根據角平分線的定義求出∠ABC+∠ACB,根據三角形內角和定理計算即可.

解:∵∠BGC=115°,

∴∠GBC+∠GCB=180°﹣115°=65°,

∵BE,CF是△ABC的∠ABC和∠ACB的平分線,

∴∠GBC=ABC,∠GCB=ACB,

∴∠ABC+∠ACB=130°,

∴∠A=180°﹣130°=50°,

故答案為:50°.

型】填空
束】
14

【題目】如圖所示,有(1)~(44個條形方格圖,圖中由實線圍成的圖形與前圖全等的有

________(只要填序號即可).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,E,DABAC上的兩點,BDCE交于點O,且AB=AC,使△ACE≌△ABD,你補充的條件是________

【答案】AD=AECD=BE或∠B=C或∠ADB=AEC

【解析】AD=AECD=BE或∠B=C或∠ADB=AEC;理由如下:

AD=AE,

ACEABD中, ,

ACE≌△ABDSAS);

CD=BE

AB=AC,

AD=AE

同理:ACE≌△ABDSAS);

若∠B=C

ACEABD中,

∴△ACE≌△ABDASA);

若∠ADB=AEC

ACEABD中,

∴△ACE≌△ABDAAS);

故答案為:AD=AECD=BE或∠B=C或∠ADB=AEC

點睛:本題考查了全等三角形的判定方法是開放型題目,存在四種情況,熟練掌握全等三角形的判定方法是解決問題的關鍵.

型】填空
束】
17

【題目】如圖,四邊形ABCD與四邊形A′B′C′D′全等,則∠A′=________,∠A=________,B′C′=________,AD=________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點O是△ABC的兩條角平分線的交點,

(1)若∠A=30°,則∠BOC的大小是   ;

(2)若∠A=60°,則∠BOC的大小是   ;

(3)若∠A=n°,則∠BOC的大小是多少?試用學過的知識說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知BE和CF是△ABC的兩條高,∠ABC=48°,∠ACB=76°,則∠FDE=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】A、B兩地相距450千米,甲、乙兩車分別從A、B兩地同時出發(fā),相向而行.已知甲車的速度為120千米/時,乙車的速度為80千米/時,t時后兩車相距50千米,則t的值為____________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】以下調查中,應采用全面調查的是(  )

A.調查某批次汽車的抗撞擊能力

B.了解全國中學生的視力和用眼衛(wèi)生情況

C.了解某班學生的身高情況

D.調查某池塘中現有魚的數量

查看答案和解析>>

同步練習冊答案