【題目】如圖,某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度,在河的南岸邊點A處,測得河的北岸點B在其北偏東45°方向,然后向西走60m到達C點,測得點B在點C的北偏東60°方向.
(1)求∠CBA的度數(shù);
(2)求出這段河的寬.(結果精確到1m,備用數(shù)據(jù) ≈1.41, ≈1.73)
【答案】(1)∠CBA=15°;(2)這段河的寬是82m.
【解析】試題分析:
(1)如下圖2,過點作BD⊥AC于點D,則由題意可得∠CBD=60°,∠ABD=45°,即可由∠CBA=∠CBD-∠ABD求出∠CBA的度數(shù)了;
(2)在下圖2中,由tan∠CBD=、tan∠ABD=結合∠CBD=60°,∠ABD=45°即可求得BD的長,從而得到河的寬度.
試題解析:
(1)作BD⊥AC于點D,
由題意可得,
∠CBD=60°,∠ABD=45°,
∴∠CBA=∠CBD﹣∠ABD=15°;
(2)由題意可得,
tan∠CBD=,tan∠ABD=,
即,
解得,BD≈82,
即這段河的寬是82m.
科目:初中數(shù)學 來源: 題型:
【題目】新能源汽車投放市場后,有效改善了城市空氣質量。經(jīng)過市場調(diào)查得知,某市去年新能源汽車總量已達到3250輛,預計明年會增長到6370輛.
(1)求今、明兩年新能源汽車數(shù)量的平均增長率;
(2)為鼓勵市民購買新能源汽車,該市財政部門決定對今年增加的新能源汽車給予每輛0.8萬元的政府性補貼.在(1)的條件下,求該市財政部門今年需要準備多少補貼資金?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級一班20名女生某次體育測試的成績統(tǒng)計如下:
成績(分) | 60 | 70 | 80 | 90 | 100 |
人數(shù)(人) | 1 | 5 | x | y | 2 |
(1)如果這20名女生體育成績的平均分數(shù)是82分,求x、y的值;
(2)在(1)的條件下,設20名學生測試成績的眾數(shù)是a,中位數(shù)是b,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90°,BC = 2.將△ABC繞頂點C逆時針旋轉得到△使點落在AC邊上.設M是的中點,連接BM,CM,則△BCM的面積為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC,∠BAC為銳角,AB>AC,AD平分∠BAC交BC于點D.
(1)如圖1,若△ABC是等腰直角三角形,直接寫出線段AC,CD,AB之間的數(shù)量關系;
(2)BC的垂直平分線交AD延長線于點E,交BC于點F.
①如圖2,若∠ABE=60°,判斷AC,CE,AB之間有怎樣的數(shù)量關系并加以證明;
②如圖3,若AC+AB=AE,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,|x|表示x在數(shù)軸上對應的點到原點的距離,我們可以把看作|x-0|,所以,|x- 3|就表示x在數(shù)軸上對應的點到3的距離,|x1||x-(-1)|就表示x在數(shù)軸上對應的點到-1的距離,由上面絕對值的幾意義,解答下列問題:
(1) 當|x-4||x2|有最小值時,x的取值情況是 ;
(2) |x-3||x2 ||x6|的最小值是 ;
(3) 已知| x -1||x2 ||y-3||y4|10 求2xy 的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】尺規(guī)作圖是指用無刻度的直尺和圓規(guī)作圖。尺規(guī)作圖是起源于古希臘的數(shù)學課題.只使用圓規(guī)和直尺,并且只準許使用有限次,來解決不同的平面幾何作圖題.初中階段同學們首次接觸的尺規(guī)作圖是“作一條線段等于已知線段”.
圖1
圖2
備用圖
(1)如圖1,在線段外有一點,現(xiàn)在利用尺規(guī)作圖驗證“兩點之間線段最短”,.請根據(jù)提示,用尺規(guī)完成作圖,并補充驗證步驟.
第一步,以為圓心,為半徑作弧,交線段于點,則_____________;
第二步,以為圓心,為半徑作弧,交線段于點,則_____________;
則____________________________________________
故:.
(2)如圖2,在直線上,從左往右依次有四個點,,,,且,.現(xiàn)以為圓心,半徑長為作圓,與直線兩個交點中右側交點記為點.再以為圓心;相同半徑長作圓,與直線兩個交點中左側交點記為點.若,,三點中,有一點分另外兩點所連線段之比為,求半徑的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,P為AB的中點,Q為邊CD上一動點,設DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點M、N,過Q作QE⊥AB于點E,過M作MF⊥BC于點F.
(1)當t≠1時,求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關系式,并求S的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】暑假期間,學校組織學生去某景點游玩,甲旅行社說:“如果帶隊的一名老師購買全票,則學生享受半價優(yōu)惠”; 乙旅行社說:“所有人按全票價的六折優(yōu)惠”.已知全票價為a元,學生有x人,帶隊老師有1人.
(1)試用含a和x的式子表示甲、乙旅行社的收費;
(2)若有30名學生參加本次活動,請你為他們選擇一家更優(yōu)惠的旅行社.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com