【題目】已知:如圖,平行四邊形ABCD的對(duì)角線相交于點(diǎn)O,點(diǎn)E在邊BC的延長(zhǎng)線上,且OE=OB,聯(lián)結(jié)DE.
(1)求證:DE⊥BE;
(2)設(shè)CD與OE交于點(diǎn)F,若OF2+FD2=OE2,CE=3,DE=4,求線段CF的長(zhǎng).
【答案】(1)證明見解析(2)
【解析】(1)先根據(jù)平行四邊形的性質(zhì),得出OD=OB,再根據(jù)OE=OB,得出OE=OB=OD,最后根據(jù)三角形內(nèi)角和定理,求得∠OEB+∠OED=90°,即可得出結(jié)論.
(2)證明△OFD為直角三角形,得出∠OFD=90°.在Rt△CED中,由勾股定理求出CD=5.由三角形面積求出EF=.在Rt△CEF中,根據(jù)勾股定理求出CF即可.
(1)證明:∵平行四邊形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.
∴∠OED=∠ODE.∵OB=OE,∴∠OBE=∠OEB.
∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠OEB+∠OED=90°.∴DE⊥BE;
(2)解:∵OE=OD,OF2+FD2=OE2,∴OF2+FD2=OD2.∴△OFD為直角三角形,且∠OFD=90°.
在Rt△CED中,∠CED=90°,CE=3,DE=4,∴CD2=CE2+DE2.
∴CD=5.又∵,∴.
在Rt△CEF中,∠CFE=90°,CE=3,,根據(jù)勾股定理得:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(-1,0),半徑為1,點(diǎn)P為直線 上的動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長(zhǎng)PQ的最小值是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將周長(zhǎng)為8的△ABC沿BC方向向右平移1個(gè)單位得到△DEF,則四邊形ABFD的周長(zhǎng)為( )
A.11
B.10
C.9
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,完成下列推理,并填寫理由,如圖,∠B=∠D,∠1=∠2,求證:AB∥CD.
【證明】∵∠1=∠2(已知),
∴∥()
∴∠DAB+∠=180°()
∵∠B=∠D(已知)
∴∠DAB+∠=180°()
∴AB∥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交CE的延長(zhǎng)線于F,且AF=BD,連接BF.
(1)求證:點(diǎn)D是線段BC的中點(diǎn);
(2)如圖2,若AB=AC=13,AF=BD=5,求四邊形AFBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題
(1)在“十一”期間,小明等同學(xué)隨家長(zhǎng)共15人到游樂(lè)園游玩,成人門票每張50元,學(xué)生門票是6折優(yōu)惠.他們購(gòu)票共花了650元,求一共去了幾個(gè)家長(zhǎng)、幾個(gè)學(xué)生?
(2)甲、乙兩人騎自行車同時(shí)從相距65千米的兩地出發(fā)相向而行,甲的速度是每小時(shí)17.5千米,乙的速度是每小時(shí)15千米,求經(jīng)過(guò)幾小時(shí)甲、乙兩人相距32.5千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙二人從同一地點(diǎn)出發(fā),同向而行,甲乘車,乙步行.如果乙先走20 km,那么甲用1 h就能追上乙;如果乙先走1 h,那么甲只用15 min就能追上乙.求甲、乙二人的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“半角型”問(wèn)題探究:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系.小明同學(xué)的方法是將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°到△ADG的位置,然后再證明△AFE≌△AFG,從而得出結(jié)論:EF=BE+DF
(1)如圖2,在四邊形ABCD中,AB=AD,∠B +∠D=180°,E,F分別是邊BC,CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由.
(2)實(shí)際應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離?
拓展提高
(3)如圖4,邊長(zhǎng)為5的正方形ABCD中,點(diǎn)E、F分別在AB、CD上,AE=CF=1,O為EF的中點(diǎn),動(dòng)點(diǎn)G、H分別在邊AD、BC上,EF與GH的交點(diǎn)P在O、F之間(與0、F不重合),且∠GPE=45°,設(shè)AG=m,求m的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 A=2 x2+3xy﹣2x﹣1,B= x2﹣xy﹣1.
(1)化簡(jiǎn):4A﹣(2B+3A),將結(jié)果用含有 x、y 的式子表示;
(2)若式子 4A﹣(2B+3A)的值與字母 x 的取值無(wú)關(guān),求 y3+A﹣ B 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com