已知:如圖,拋物線軸交于點,與軸交于、兩點,點的坐標(biāo)為

(1)求拋物線的解析式及頂點的坐標(biāo);

(2)設(shè)點是在第一象限內(nèi)拋物線上的一個動點,求使與四邊形面積相等的四邊形的點的坐標(biāo);

(3)求的面積.

 

【答案】

解:(1)∵拋物線軸交于點,與

交于

        ∴   解得

        ∴ 拋物線的解析式為 ----------------1分

        ∵

    ∴頂點的坐標(biāo)為( 1 ,4) -----------------2分

(2)連結(jié),過點D作軸于點 .

         令

         ∴  ,

         ∴ 點B的坐標(biāo)為(3 ,0

 ∴

 --------3分

     ∵

     ∴

     ∵點是在第一象限內(nèi)拋物線上的一個動點,

      

∴ 點P 是過 D 且與直線BC平行的直線和拋物線的交點

而直線BC的函數(shù)解析式為--------------------4分

∴設(shè)直線DP的函數(shù)解析式為 , 過點D(1,4)

      ∴  ,

      ∴直線DP的函數(shù)解析式為 ----------------------5分

        把代入中,解得

      ∴點的坐標(biāo)為(2,3) ---------------------------------6分

(3)∵點P 與點C關(guān)于DE 對稱,點B與點A關(guān)于 DE 對稱

     ∴

     ∴.---------------7分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•浦江縣模擬)已知:如圖,拋物線與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標(biāo)為(4,0),點B的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);
(3)若平行于x軸的動直線 與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線軸交于點,點,與直線相交于點,點,直線軸交于點

(1)寫出直線的解析式.

(2)求的面積.

(3)若點在線段上以每秒1個單位長度的速度從運動(不與重合),同時,點在射線上以每秒2個單位長度的速度從運動.設(shè)運動時間為秒,請寫出的面積的函數(shù)關(guān)系式,并求出點運動多少時間時,的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線軸交于點、點,與直線相交于點、點,直線軸交于點。

(1)求直線的解析式;
(2)求的面積;
(3)若點在線段上以每秒1個單位長度的速度從運動(不與重合),同時,點在射線上以每秒2個單位長度的速度從運動.設(shè)運動時間為秒,請寫出的面積的函數(shù)關(guān)系式,并求出點運動多少時間時,的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京師大附中九年級上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

 已知:如圖,拋物線軸交于點,點,與直線相交于點,點,直線軸交于點

1.(1)求的面積.

2.(2)若點在線段上以每秒1個單位長度的速度從運動(不與重合),同時,點在射線上以每秒2個單位長度的速度從運動.設(shè)運動時間為秒,請寫出的面積的函數(shù)關(guān)系式,并求出點運動多少時間時,的面積最大,最大面積是多少?

 

查看答案和解析>>

同步練習(xí)冊答案