【題目】在Rt△ABC中,∠C=90°,AC=6,BC=8(如圖),點(diǎn)D是邊AB上一點(diǎn),把△ABC繞著點(diǎn)D旋轉(zhuǎn)90°得到△A'B'C',邊B'C'與邊AB相交于點(diǎn)E,如果AD=BE,那么AD長為__.
【答案】
【解析】
分順時(shí)針旋轉(zhuǎn)和逆時(shí)針旋轉(zhuǎn)兩種情況分別畫出示意圖,進(jìn)行討論即可.
∵AC=6,BC=8,
∴AB=10.
①當(dāng)順時(shí)針旋轉(zhuǎn)時(shí),如圖1所示.
設(shè)DE=3x,則B′D=4x.
根據(jù)旋轉(zhuǎn)的性質(zhì),可知:BD=B′D=4x,
∵AD=BE,
∴AE=BD=4x,
∴AB=AE+DE+BD=4x+3x+4x=10,
解得:
∴AD=4x+3x=
②當(dāng)逆時(shí)針旋轉(zhuǎn)時(shí),如圖2所示.
設(shè)DE=3x,則B′D=4x,
∴BE=B′D﹣DE=x,
∴AD=x,AB=AD+DE+B′E=x+3x+x=10,
解得:x=2,
∴DE=6,B′D=8,
∴B′E=10>B′C′,
∴該情況不存在.
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是CD邊上一點(diǎn),且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,△ABC的位置如圖所示.
(1)頂點(diǎn)A關(guān)于x軸對(duì)稱的點(diǎn)A′的坐標(biāo)(____________),頂點(diǎn)B的坐標(biāo)(____________),頂點(diǎn)C關(guān)于原點(diǎn)對(duì)稱的點(diǎn)C′的坐標(biāo)(____________).
(2)△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點(diǎn)從開始沿折線以的速度運(yùn)動(dòng),點(diǎn)從開始沿邊以的速度移動(dòng),如果點(diǎn)、分別從、同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)________時(shí),四邊形也為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB=5,AD=4,AD∥BM, (如圖),點(diǎn)C、E分別為射線BM上的動(dòng)點(diǎn)(點(diǎn)C、E都不與點(diǎn)B重合),聯(lián)結(jié)AC、AE,使得∠DAE=∠BAC,射線EA交射線CD于點(diǎn)F.設(shè)BC=x, .
(1)如圖1,當(dāng)x=4時(shí),求AF的長;
(2)當(dāng)點(diǎn)E在點(diǎn)C的右側(cè)時(shí),求y關(guān)于x的函數(shù)關(guān)系式,并寫出函數(shù)的定義域;
(3)聯(lián)結(jié)BD交AE于點(diǎn)P,若△ADP是等腰三角形,直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,中,,,.
點(diǎn)從點(diǎn)開始沿邊向以的速度移動(dòng),點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以的速度移動(dòng).如果、分別從,同時(shí)出發(fā),線段能否將分成面積相等的兩部分?若能,求出運(yùn)動(dòng)時(shí)間;若不能說明理由.
若點(diǎn)沿射線方向從點(diǎn)出發(fā)以的速度移動(dòng),點(diǎn)沿射線方向從點(diǎn)出發(fā)以的速度移動(dòng),、同時(shí)出發(fā),問幾秒后,的面積為?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
(1)在圖中畫出與△ABC關(guān)于直線l成軸對(duì)稱的△A′B′C′.
(2)四邊形 ABCA′的面積為_____;
(3)在直線l上找一點(diǎn)P,使PA+PB的長最短,則這個(gè)最短長度為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com