【題目】如圖,△ABC的高BD,CE相交于點O.請你添加一個條件,使BD=CE.你所添加的條件是________.(僅添加一對相等的線段或一對相等的角)

【答案】BE=CD或∠EBC=∠DCB或∠DBC=∠BCE或AB=AC

【解析】∵△ABC的高BD、CE相交于點0.

∴∠BEC=∠CDB=90°,

∵BC=CB,

要使BD=CE,只需△BCE≌△CBD,

BE=CD時,利用HL即可證得△BCE≌△CBD;

當∠ABC=∠ACB時,利用AAS即可證得△BCE≌△CBD;

同理:當∠DBC=∠ECB也可證得△BCE≌△CBD;

AB=AC時,∠ABC=∠ACB,∴當AB=AC時,也可證得△BCE≌△CBD等.

故答案為:BD=CE∠DBC=∠ECB或∠EBC=∠DCB AB=ACAE=AD(答案不唯一,寫出一個正確的即可)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是用4個相同的小矩形與1個小正方形密鋪而成的正方形圖案,已知大正方形的面積為49,小正方形的面積為4,若用x,y(其中xy)表示小矩形的長與寬,請觀察圖案,指出以下關(guān)系式中不正確的是(  )

A.x+y=7B.xy=2C.x2y2=4D.4xy+4=49

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCADE均為等邊三角形,點OAC的中點,點D在射線BO上,連結(jié)OE,EC,則∠ACE_____°;若AB1,則OE的最小值=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,BAC=120°,AB=AC=2,點D是BC邊上的一個動點(不與B、C重合),在AC上取一點E,使ADE=30°.

(1)求證:ABD∽△DCE;

(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;

(3)當ADE是等腰三角形時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,∠B的角平分線BEAD交于點E,BED的角平分線EFDC交于點F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】CD經(jīng)過∠BCA頂點C的一條直線,CA=CB,EF分別是直線CD上兩點,且∠BEC=CFA=,

1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E、F在射線CD上,請解決下面兩個問題:

①如圖1,若∠BCA=90°,=90°,則BE_____CF;EF____.(填”““=”

②如圖2,若<∠BCA180°,請?zhí)砑右粋關(guān)于∠與∠BCA關(guān)系的條件__________,使①中的兩個結(jié)論仍然成立,并證明兩個結(jié)論成立.

2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠=BCA,請?zhí)岢?/span>EF,BEAF三條線段數(shù)量關(guān)系的合理猜想(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(發(fā)現(xiàn)問題)

如圖1,已知,以點為直角頂點,為腰向外作等腰直角、請你以為直角頂點、為腰,向外作等腰直角(不寫作法,保留作圖痕跡).連接.那么的數(shù)量關(guān)系是________

(拓展探究)

如圖2,已知,以、為邊向外作正方形和正方形,連接、,試判斷之間的數(shù)量關(guān)系,并說明理由.

(解決問題)

如圖3,有一個四邊形場地,,,,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題情境)如圖①,在△ABC中,若AB10AC6,求BC邊上的中線AD的取值范圍.

1)(問題解決)延長AD到點E使DEAD,再連接BE(或?qū)ⅰ?/span>ACD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷出中線AD的取值范圍是   

(反思感悟)解題時,條件中若出現(xiàn)“中點”、“中線”字樣,可以考慮構(gòu)造以該中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同個三角形中,從而解決問題.

2)(嘗試應(yīng)用)如圖②,△ABC中,∠BAC90°,ADBC邊上的中線,試猜想線段ABAC,AD之間的數(shù)量關(guān)系,并說明理由.

3)(拓展延伸)如圖③,△ABC中,∠BAC90°,DBC的中點,DMDN,DMAB于點M,DNAC于點N,連接MN.當BM4,MN5AC6時,請直接寫出中線AD的取值范圍.(溫馨提示:如果設(shè)直角三角形的兩條直角邊長度分別是ab,斜邊長度是c,那么可以用數(shù)學(xué)語言表達三邊關(guān)系,a2+b2c2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中AD是A的外角平分線,P是AD上一動點且不與點A、D重合,記PB+PC=a,AB+AC=b,則a、b的大小關(guān)系是(

Aa>b Ba=b Ca<b D不能確定

查看答案和解析>>

同步練習(xí)冊答案