(2013•鹽城模擬)如圖,長方體的底面邊長分別為1cm和3cm,高為6cm,如果用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈到達B(B為棱的中點),那么所用細線最短需要多長?如果從點A開始經(jīng)過4個側(cè)面纏繞n圈到達點B,那么所用細線最短需要多長?

【答案】分析:要求所用細線的最短距離,需將長方體的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.
解答:解:將長方體展開,連接A、B,
根據(jù)兩點之間線段最短,AB==cm;
如果從點A開始經(jīng)過4個側(cè)面纏繞n圈到達點B,
相當于直角三角形的兩條直角邊分別是8n和6,
根據(jù)勾股定理可知所用細線最短需要==
故用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈到達B(B為棱的中點),那么所用細線最短需要cm,如果從點A開始經(jīng)過4個側(cè)面纏繞n圈到達點B,
那么所用細線最短需要
點評:本題考查了平面展開-最短路徑問題,是一道趣味題,將長方體展開,根據(jù)兩點之間線段最短,運用勾股定理解答即可.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•鹽城模擬)如圖所示,在建立平面直角坐標系后,△ABC頂點A的坐標為(1,-4),若以原點O為位似中心,在第二象限內(nèi)畫△ABC的位似圖形△A′B′C′,使△A′B′C′與△ABC的位似比等于
1
2
,則點A′的坐標為
(-
1
2
,2)
(-
1
2
,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鹽城模擬)2012年元月的某一天,我市的最低氣溫為-3℃,最高氣溫為4℃,那么這一天我市的日溫差是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鹽城模擬)典典同學學完統(tǒng)計知識后,隨機調(diào)查了她家所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形和條形統(tǒng)計圖:

請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:
(1)扇形統(tǒng)計圖中a=
20%
20%
,b=
12%
12%
;并補全條形統(tǒng)計圖;
(2)若該轄區(qū)共有居民3500人,請估計年齡在0~14歲的居民的人數(shù).
(3)一天,典典知道了轄區(qū)內(nèi)60歲以上的部分老人參加了市級門球比賽,比賽的老人們分成甲、乙兩組,典典很想知道甲乙兩組的比賽結(jié)果,王大爺告訴說,甲組與乙組的得分和為110,甲組得分不低于乙組得分的1.5倍,甲組得分最少為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鹽城模擬)已知四邊形ABCD的外接圓⊙O的半徑為5,對角線AC與BD的交點為E,且AB2=AE•AC,BD=8,
(1)判斷△ABD的形狀并說明理由;
(2)求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鹽城模擬)如圖(1),分別以兩個彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標系(O、C、F三點在x軸正半軸上).若⊙P過A、B、E三點(圓心在x軸上)交y軸于另一點Q,拋物線y=
14
x2+bx+c
經(jīng)過A、C兩點,與x軸的另一交點為G,M是FG的中點,B點坐標為(2,2).
(1)求拋物線的函數(shù)解析式和點E的坐標;
(2)求證:ME是⊙P的切線;
(3)如圖(2),點R從正方形CDEF的頂點E出發(fā)以1個單位/秒的速度向點F運動,同時點S從點Q出發(fā)沿y軸以5個單位/秒的速度向上運動,連接RS,設(shè)運動時間為t秒(0<t<1),在運動過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;

查看答案和解析>>

同步練習冊答案