【題目】如圖,△OBC的邊BC∥x軸,過點C的雙曲線y=(k≠0)與△OBC的邊OB交于點D,且OD:DB=1:2,若△OBC的面積等于8,則k的值為__.
【答案】2
【解析】
延長BC交y軸于點E,過點D作DF⊥x軸于點FBA⊥x軸于A.由矩形與反比例函數(shù)的性質(zhì),可得S四邊形ABDF=S△OBC=8,易證得△ODF∽△OBA,又由OD:DB=1:2,即可得S△ODF=S四邊形ABDF=×4=,則可求得答案.
解:延長BC交y軸于點E,過點D作DF⊥x軸于點F,BA⊥x軸于A.
∵梯形ABCO的底邊AO在x軸上,BC∥AO,AB⊥AO,
∴四邊形OABE是矩形,
∴S△OBE=S△OAB,
∵過點C的雙曲線y=交OB于點D,
∴S△OCE=S△ODF,
∴S四邊形ABDF=S△OBC=8,
∵DF∥AB,
∴△ODF∽△OBA,
∵OD:DB=1:2,
∴OD:OB=1:3,
∴S△ODF:S△OAB=1:9,
∴S△ODF:S四邊形ABDF=1:8,
∴S△ODF=S四邊形ABDF=×8=1,
∴k=2.
故答案為:2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國魏晉時期的數(shù)學(xué)家劉徽(263年左右)首創(chuàng)“割圓術(shù)”,所謂“割圓術(shù)”就是利用圓內(nèi)接正多邊形無限逼近圓來確定圓周率,劉徽計算出圓周率.
劉徽從正六邊形開始分割圓,每次邊數(shù)成倍增加,依次可得圓內(nèi)接正十二邊形,圓內(nèi)接正二十四邊形,…,割的越細,圓的內(nèi)接正多邊形就越接近圓.設(shè)圓的半徑為R,圓內(nèi)接正六邊形的周長,計算;圓內(nèi)接正十二邊形的周長,計算;請寫出圓內(nèi)接正二十四邊形的周長________,計算________.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝建國70周年,某校舉辦了愛我中華知識競賽活動.該校南、北兩個校區(qū)七年級各有300名學(xué)生參加競賽活動.為了解這兩個校區(qū)參賽學(xué)生成績情況,從中各隨機抽取了10名學(xué)生的成績進行調(diào)查,過程如下:
(收集、整理、描述數(shù)據(jù))根據(jù)隨機抽取的10名學(xué)生的成績,制作了如下統(tǒng)計圖表:
(說明:成績90分及以上為優(yōu)秀,80-89分為良好,60-79分為合格,60分以下為不合格)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
南校 | 92 | 100 | 86 | 80 | 73 | 98 | 54 | 95 | 98 | 85 |
北校 | 100 | 100 | 94 | 83 | 74 | 86 | 75 | 100 | 73 | 75 |
(分析數(shù)據(jù))對上述數(shù)據(jù)進行分析,分別求出了兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表:
校區(qū) | 平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) |
南校 | 87 | 90.5 | |
北校 | 86 | 100 |
(得出結(jié)論)綜合上述統(tǒng)計全過程,回答下列問題:
(1)補全表格.
(2)估計北校七年級學(xué)生競賽成績?yōu)閮?yōu)秀的人數(shù).
(3)你認為哪個校區(qū)的七年級學(xué)生競賽成績比較好?說明你的理由.(從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,點從點出發(fā),以的速度沿向點運動,同時點從點出發(fā),以的速度沿向點運動,知道它們都到達點為止.若的面積為,點的運動時間為,則與的函數(shù)圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)香洲區(qū)全面推進書香校園建設(shè)的號召,班長小青隨機調(diào)查了若干同學(xué)一周課外閱讀的時間t(單位:小時),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0<t≤7,B:7<t≤14,C:14<t≤21,D:t>21),根據(jù)圖中信息,解答下列問題:
(1)這項工作中被調(diào)查的總?cè)藬?shù)是多少?
(2)補全條形統(tǒng)計圖,并求出表示A組的扇形統(tǒng)計圖的圓心角的度數(shù);
(3)如果小青想從D組的甲、乙、丙、丁四人中先后隨機選擇兩人做讀書心得發(fā)言代表,請用列表或樹狀圖的方法求出恰好選中甲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】安全使用電瓶車可以大幅度減少因交通事故引發(fā)的人身傷害,為此交警部門在全區(qū)范圍開展了安全使用電瓶車專項宣傳活動.在活動前和活動后分別隨機抽部分使用電瓶車的市民,就騎電瓶車戴安全帽情況(:每次戴、:經(jīng)常戴、:偶爾戴、:都不戴)進行問卷調(diào)查,將相關(guān)的數(shù)據(jù)制成如下統(tǒng)計圖表.
活動前騎電瓶車戴安全帽情況統(tǒng)計表
類別 | 人數(shù) |
68 | |
245 | |
510 | |
177 | |
合計 | 1000 |
(1)宣傳活動前,在抽取的市民中哪一類別的人數(shù)最多?占抽取人數(shù)的百分之幾?
(2)該區(qū)約有37萬人使用電瓶車,請估計活動前全市騎電瓶車“都不戴”安全帽的總?cè)藬?shù);
(3)小明認為,宣傳活動后騎電瓶車“都不戴”安全帽的人數(shù)為178,比活動前增加了1人,因此交警部門開展的宣傳活動沒有效果.小明分析數(shù)據(jù)的方法是否合理?請結(jié)合統(tǒng)計圖表,談?wù)勀銓痪块T宣傳活動的效果的看法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題)用n個2×1矩形,鑲嵌一個2×n矩形,有多少種不同的鑲嵌方案?(2×n矩形表示矩形的鄰邊是2和n)
(探究)不妨假設(shè)有an種不同的鑲嵌方案.為探究an的變化規(guī)律,我們采取一般問題特殊化的策略,先從最簡單情形入手,再逐次遞進,最后猜想得出結(jié)論.
探究一:用1個2×1矩形,鑲嵌一個2×1矩形,有多少種不同的鑲嵌方案?
如圖(1),顯然只有1種鑲嵌方案.所以,a1=1.
探究二:用2個2×1矩形,鑲嵌一個2×2矩形,有多少種不同的鑲嵌方案?
如圖(2),顯然只有2種鑲嵌方案.所以,a2=2.
探究三:用3個2×1矩形,鑲嵌一個2×3矩形,有多少種不同的鑲嵌方案?
一類:在探究一每個鑲嵌圖的右側(cè)再橫著鑲嵌2個2×1矩形,有1種鑲嵌方案;
二類:在探究二每個鑲嵌圖的右側(cè)再豎著鑲嵌1個2×1矩形,有2種鑲嵌方案;
如圖(3).所以,a3=1+2=3.
探究四:用4個2×1矩形,鑲嵌一個2×4矩形,有多少種不同的鑲嵌方案?
一類:在探究二每個鑲嵌圖的右側(cè)再橫著鑲嵌2個2×1矩形,有 種鑲嵌方案;
二類:在探究三每個鑲嵌圖的右側(cè)再豎著鑲嵌1個2×1矩形,有 種鑲嵌方案;
所以,a4= .
探究五:用5個2×1矩形,鑲嵌一個2×5矩形,有多少種不同的鑲嵌方案?
(仿照上述方法,寫出探究過程,不用畫圖)
……
(結(jié)論)用n個2×1矩形,鑲嵌一個2×n矩形,有多少種不同的鑲嵌方案?
(直接寫出an與an﹣1,an﹣2的關(guān)系式,不寫解答過程).
(應(yīng)用)用10個2×1矩形,鑲嵌一個2×10矩形,有 種不同的鑲嵌方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AC,BD⊥AC,垂足為E,點F在BD的延長線上,且DF=DC,連接AF、CF.
(1)求證:∠BAC=2∠DAC;
(2)若AF=10,BC=4,求tan∠BAD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com