【題目】二次函數(shù) 的圖象如圖所示,點A0位于坐標原點,點A1 , A2 , A3 , …,A2008在y軸的正半軸上,點B1 , B2 , B3 , …,B2008在二次函數(shù) 位于第一象限的圖象上,若△A0B1A1 , △A1B2A2 , △A2B3A3 , …,△A2007B2008A2008都為等邊三角形,則△A2007B2008A2008的邊長=

【答案】2008
【解析】解:作B1A⊥y軸于A,B2B⊥y軸于B,B3C⊥y軸于C.
設等邊△A0B1A1、△A1B2A2、△A2B3A3中,AA1=a,BA2=b,CA2=c.
①等邊△A0B1A1中,A0A=a,
所以B1A=atan60°= a,代入解析式得 ×( a)2=a,
解得a=0(舍去)或a= ,于是等邊△A0B1A1的邊長為 ×2=1;②等邊△A2B1A1中,A1B=b,
所以BB2=btan60°= b,B2點坐標為( b,1+b)
代入解析式得 ×( b)2=1+b,
解得b=﹣ (舍去)或b=1,
于是等邊△A2B1A1的邊長為1×2=2;③等邊△A2B3A3中,A2C=c,
所以CB3=btan60°= c,B3點坐標為( c,3+c)代入解析式得 ×( c)2=3+c,
解得c=﹣1(舍去)或c= ,
于是等邊△A3B3A2的邊長為 ×2=3.
于是△A2007B2008A2008的邊長為2008.
所以答案是:2008.

【考點精析】根據(jù)題目的已知條件,利用數(shù)與式的規(guī)律的相關知識可以得到問題的答案,需要掌握先從圖形上尋找規(guī)律,然后驗證規(guī)律,應用規(guī)律,即數(shù)形結合尋找規(guī)律.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC邊于點D,過點C作CF∥AB,與過點B的切線交于點F,連接BD.
(1)求證:BD=BF;
(2)若AB=10,CD=4,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,AF=DE,AF和DE相交于點G,
(1)觀察圖形,寫出圖中所有與∠AED相等的角.
(2)選擇圖中與∠AED相等的任意一個角,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個結論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長是9.其中正確的結論是(把你認為正確結論的序號都填上.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點,若⊙O的半徑為7,則GE+FH的最大值為(

A.10.5
B.7 ﹣3.5
C.11.5
D.7 ﹣3.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,坐標平面上,二次函數(shù)y=﹣x2+4x﹣k的圖形與x軸交于A、B兩點,與y軸交于C點,其頂點為D,且k>0.若△ABC與△ABD的面積比為1:4,則k值為何?(

A.1
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形ABCD的邊長為6,對角線AC與BD相交于點O,OE⊥AB,垂足為點E,AC=4,那么sin∠AOE=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2﹣4x﹣5與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E.

(1)求直線BC的解析式;
(2)當線段DE的長度最大時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點P從點A出發(fā)沿邊AC向點C以1cm/s的速度移動,點Q從C點出發(fā)沿CB邊向點B以2cm/s的速度移動.

(1)如果P、Q同時出發(fā),幾秒鐘后,可使△PCQ的面積為8平方厘米?
(2)是否存在某一時刻,使△PCQ的面積等于△ABC面積的一半,并說明理由.
(3)點P、Q在移動過程中,是否存在某一時刻,使得△PCQ的面積達到最大值,并說明利理由.

查看答案和解析>>

同步練習冊答案