【題目】如圖,在平行四邊形ABCD中,∠BCD和∠ABC的平分線分別交ADEG兩點,CE,BG相交于點O

(1)求證:AG=DE.

(2)已知AB=4AD=5,

①求的值.

②求四邊形ABOE的面積與△BOC的面積之比.

【答案】(1)證明見解析;(2)=;②SABOESOBC=2325.

【解析】

1)由平行四邊形的性質(zhì)和角平分線得出∠ABG=AGB,得出AG=AB,同理可證DE=DC,推出AG=DE即可解決問題.

2)①求出EG的值,利用平行線的性質(zhì)即可解決問題.

②連接OA.設(shè)△AEP的面積為S.求出四邊形ABOE,△OBC的面積即可解決問題.

解:(1)∵BG平分∠ABCCE平分∠BCD

∴∠ABG=∠CBG,∠BCE∠DCE

∵AD∥BC

∴∠CBG=∠AGB,∠BCE=∠CED

∴AB=AG,CD=DE

∵AB=CD

∴AG=DE;

(2)①∵AB=4AD=5

∴AG=DG=4,AE=AD -DE=1,GD=AD -AG=1

∴EG=AD-AE-DG=3

∵AD∥BC

==

連接AO,設(shè)SOEG=9a

∵AD∥BC,

∴△OEG∽△OCB

∴SOEG :SOBC=9:25

∴SOBC=25a

∵AE:EG=1:3

∴SOAE : SOEG=1:3

∴SOAE =3a

∴SOAG=12a

∵SOAB : SOAG=OB:OG=5:3

∴SOAB=20a

∴SABOE=SOAB+SOAE =23a

∴SABOE : SOBC=23a : 25a=23:25

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,點O是對角線AC、BD的交點.ECD上,且DE=2CE,連接BE.過點CCF⊥BE,垂足是F,連接OF,則OF的長為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,點A0位于坐標原點,A1,A2,A3,…,A2009y軸的正半軸上,B1,B2,B3,…,B2009在二次函數(shù)第一象限的圖象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2008B2009A2009都為等邊三角形,計算出△A2008B2009A2009的邊長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(0<2a≤b)與x軸最多有一個交點.以下四個結(jié)論:

abc>0;

②該拋物線的對稱軸在x=﹣1的右側(cè);

③關(guān)于x的方程ax2+bx+c+1=0無實數(shù)根;

≥2.

其中,正確結(jié)論的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O中,弦CD與直徑AB交于點H.若DH=CH=BD=4,

(1)AB的長為______.

(2)BD的長為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點坐標分別是O0,0),A3,0),B4,4),C(-2,3),將點O,A,BC的橫坐標、縱坐標都乘以-2.

(1)畫出以變化后的四個點為頂點的四邊形;

(2)由(1)得到的四邊形與四邊形OABC位似嗎?如果位似,指出位似中心及與原圖形的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,以CD為邊作等邊三角形CDE,BEAC相交于點M,則∠ADM的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三個頂點的坐標分別為A(1,1),B(4,2),C(3,4);

(1)請畫出將繞A點逆時針旋轉(zhuǎn)90度得到的圖形AB1C1;

(2)請畫出關(guān)于原點O成中心對稱的圖形

(3)x軸上找一點P,使PA+PB的值最小,請在圖上標出點P,并直接寫出點P的坐標______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=-xcx軸交于點A3,0),與y軸交于點B,拋物線y=-x2bxc經(jīng)過點AB

1)求點B的坐標和拋物線的解析式;

2Mm0)為線段OA上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點P,N

①點M在線段OA上運動,若BPN∽△APM,求點M的坐標;

②過點NNQABQ,當N點坐標是多少時,NQ取得最大值,最大值是多少?

查看答案和解析>>

同步練習冊答案