(2008•哈爾濱)如圖,圓錐形煙囪帽的底面直徑為80cm,母線長為50cm,則這樣的煙囪帽的側面積是( )

A.4000πcm2
B.3600πcm2
C.2000πcm2
D.1000πcm2
【答案】分析:利用勾股定理可求得圓錐的底面半徑,那么圓錐的側面積=底面周長×母線長÷2.
解答:解:圓錐的側面積展開圖是一個扇形,圓錐的母線長為50cm,底面直徑為80cm,扇形的弧長為80π,所以圓錐形煙囪帽的側面積=×50×80π=2000πcm2.故選C.
點評:本題利用了圓的周長公式和扇形面積公式求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圓》(12)(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標系中,直線y=與x軸、y軸分別交于A、B兩點,將△ABO繞原點O順時針旋轉得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點G.動點E從原點O出發(fā),以1個單位/秒的速度沿x軸正方向運動,設動點E運動的時間為t秒.
(1)求點D的坐標;
(2)連接DE,當DE與線段OB′相交,交點為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標系中,直線y=與x軸、y軸分別交于A、B兩點,將△ABO繞原點O順時針旋轉得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點G.動點E從原點O出發(fā),以1個單位/秒的速度沿x軸正方向運動,設動點E運動的時間為t秒.
(1)求點D的坐標;
(2)連接DE,當DE與線段OB′相交,交點為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前知識點回歸+鞏固 專題11 一次函數(shù)(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標系中,直線y=與x軸、y軸分別交于A、B兩點,將△ABO繞原點O順時針旋轉得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點G.動點E從原點O出發(fā),以1個單位/秒的速度沿x軸正方向運動,設動點E運動的時間為t秒.
(1)求點D的坐標;
(2)連接DE,當DE與線段OB′相交,交點為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標系中,直線y=與x軸、y軸分別交于A、B兩點,將△ABO繞原點O順時針旋轉得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點G.動點E從原點O出發(fā),以1個單位/秒的速度沿x軸正方向運動,設動點E運動的時間為t秒.
(1)求點D的坐標;
(2)連接DE,當DE與線段OB′相交,交點為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:解答題

(2008•哈爾濱)小李想用籬笆圍成一個周長為60米的矩形場地,矩形面積S(單位:平方米)隨矩形一邊長x(單位:米)的變化而變化.
(1)求S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)當x是多少時,矩形場地面積S最大,最大面積是多少?

查看答案和解析>>

同步練習冊答案