【題目】如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、B、C均落在格點(diǎn)上.
(1)△ABC的面積等于 ;
(2)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請(qǐng)你在如圖所示的網(wǎng)格中,用直尺和三角尺畫(huà)出該正方形,并簡(jiǎn)要說(shuō)明畫(huà)圖方法(不要求證明) .
【答案】(1)6;
(2)詳見(jiàn)解析
【解析】
(1)△ABC以AB為底,高為3個(gè)單位,求出面積即可:。
(2)作出所求的正方形,如圖所示,畫(huà)圖方法為:取格點(diǎn)P,連接PC,過(guò)點(diǎn)A畫(huà)PC的平行線,與BC交于點(diǎn)Q,連接PQ與AC相交得點(diǎn)D,過(guò)點(diǎn)D畫(huà)CB的平行線,與AB相交得點(diǎn)E,分別過(guò)點(diǎn)D、E畫(huà)PC的平行線,與CB相交得點(diǎn)G,F,則四邊形DEFG即為所求。
(1)6;
(2)取格點(diǎn)P,連接PC,過(guò)點(diǎn)A畫(huà)PC的平行線,與BC交于點(diǎn)Q,連接PQ與AC相交得點(diǎn)D,過(guò)點(diǎn)D畫(huà)CB的平行線,與AB相交得點(diǎn)E,分別過(guò)點(diǎn)D、E畫(huà)PC的平行線,與CB相交得點(diǎn)G,F,則四邊形DEFG即為所求。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=24,AC=18,D是AC上一點(diǎn),AD=6,在AB上取一點(diǎn)E,使A、D、E三點(diǎn)組成的三角形與△ABC相似,則AE的長(zhǎng)為( )
A.8B.C.8或D.8或9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人“五一”放假期間去登盤(pán)山掛月峰,甲先開(kāi)車(chē)沿小路開(kāi)到了距離登山入口100米的地方后,開(kāi)始以10米/分鐘的登山上升速度徒步登山;甲開(kāi)始徒步登山同時(shí),乙直接從登山入口開(kāi)始徒步登山,起初乙以15米/分鐘的登山上升速度登山,兩分鐘后得知甲已經(jīng)在半山腰,于是乙以甲登山上升速度的3倍提速.兩人相約只登到距地面高度為300米的地方,設(shè)兩人徒步登山時(shí)間為(分鐘)
(Ⅰ)根據(jù)題意,填寫(xiě)下表:
徒步登山時(shí)間/時(shí)間 | 2 | 3 | 4 | 5 | … |
甲距地面高度/米 | 120 | ______ | 140 | ______ | … |
乙距地面高度/米 | 30 | 60 | ______ | ______ | … |
(Ⅱ)請(qǐng)分別求出甲、乙兩人徒步登山全程中,距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)關(guān)系式;
(Ⅲ)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是直角邊長(zhǎng)為1cm的等腰直角三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),解答下列各問(wèn)題:
(1)當(dāng)t為何值時(shí),△PBQ是直角三角形?
(2)設(shè)四邊形APQC的面積為y(cm2),求y與t的關(guān)系式;是否存在某一時(shí)刻t,使四邊形APQC的面積是△ABC面積的二分之一?如果存在,求出t的值;不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一臺(tái)實(shí)物投影儀,圖2是它的示意圖,折線表示固定支架,垂直水平桌面于點(diǎn),點(diǎn)為旋轉(zhuǎn)點(diǎn),可轉(zhuǎn)動(dòng),當(dāng)繞點(diǎn)順時(shí)針旋轉(zhuǎn)時(shí),投影探頭始終垂直于水平桌面,經(jīng)測(cè)量:,,,.(結(jié)果精確到0.1)
(1)如圖2,,.
①填空:_________°;
②求投影探頭的端點(diǎn)到桌面的距離.
(2)如圖3,將(1)中的向下旋轉(zhuǎn),當(dāng)投影探頭的端點(diǎn)到桌面的距離為時(shí),求的大小.(參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,為原點(diǎn),拋物線經(jīng)過(guò)點(diǎn),對(duì)稱軸為直線,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為點(diǎn).過(guò)點(diǎn)作直線軸,交軸于點(diǎn).
(Ⅰ)求該拋物線的解析式及對(duì)稱軸;
(Ⅱ)點(diǎn)在軸上,當(dāng)的值最小時(shí),求點(diǎn)的坐標(biāo);
(Ⅲ)拋物線上是否存在點(diǎn),使得,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校計(jì)劃購(gòu)買(mǎi)某種樹(shù)苗綠化校園,甲、乙兩林場(chǎng)這種樹(shù)苗的售價(jià)都是每棵20元,又各有不同的優(yōu)惠方案,甲林場(chǎng):若一次購(gòu)買(mǎi)20棵以上,售價(jià)是每棵18元;乙林場(chǎng):若一次購(gòu)買(mǎi)10棵以上,超過(guò)10棵部分打8.5折。設(shè)學(xué)校一次購(gòu)買(mǎi)這種樹(shù)苗x棵(x是正整數(shù)).
(Ⅰ)根據(jù)題意填寫(xiě)下表:
學(xué)校一次購(gòu)買(mǎi)樹(shù)苗(棵) | 10 | 15 | 20 | 40 |
在甲林場(chǎng)實(shí)際花費(fèi)(元) | 200 | 300 | ||
在乙林場(chǎng)實(shí)際花費(fèi)(元) | 200 | 370 | 710 |
(Ⅱ)學(xué)校在甲林場(chǎng)一次購(gòu)買(mǎi)樹(shù)苗,實(shí)際花費(fèi)記為(元),在乙林場(chǎng)一次購(gòu)買(mǎi)樹(shù)苗,實(shí)際花費(fèi)記為(元),請(qǐng)分別寫(xiě)出與x的函數(shù)關(guān)系式;
(Ⅲ)當(dāng)時(shí),學(xué)校在哪個(gè)林場(chǎng)一次購(gòu)買(mǎi)樹(shù)苗,實(shí)際花費(fèi)較少?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),點(diǎn)B(0,),點(diǎn)O(0,0).△AOB繞著O順時(shí)針旋轉(zhuǎn),得△A'OB',點(diǎn)A、B旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A',B',記旋轉(zhuǎn)角為α.
(Ⅰ)如圖1,A'B'恰好經(jīng)過(guò)點(diǎn)A時(shí),求此時(shí)旋轉(zhuǎn)角α的度數(shù),并求出點(diǎn)B'的坐標(biāo);
(Ⅱ)如圖2,若0°<α<90°,設(shè)直線AA'和直線BB'交于點(diǎn)P,求證:AA'⊥BB';
(Ⅲ)若0°<α<360°,求(Ⅱ)中的點(diǎn)P縱坐標(biāo)的最小值(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在半徑為1的上,直線與相切,,連接交于點(diǎn).
(Ⅰ)如圖①,若,求的長(zhǎng);
(Ⅱ)如圖②,與交于點(diǎn),若,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com