(2012•菏澤)如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC和△DEF的頂點(diǎn)都在格點(diǎn)上,P1,P2,P3,P4,P5是△DEF邊上的5個格點(diǎn),請按要求完成下列各題:
(1)試證明三角形△ABC為直角三角形;
(2)判斷△ABC和△DEF是否相似,并說明理由;
(3)畫一個三角形,使它的三個頂點(diǎn)為P1,P2,P3,P4,P5中的3個格點(diǎn)并且與△ABC相似(要求:不寫作法與證明).
分析:(1)利用網(wǎng)格得出AB2=20,AC2=5,BC2=25,再利用勾股定理逆定理得出答案即可;
(2)利用AB=2
5
,AC=
5
,BC=5以及DE=4
2
,DF=2
2
,EF=2
10
,利用三角形三邊比值關(guān)系得出即可;
(3)根據(jù)△P2P4 P5三邊與△ABC三邊長度得出答案即可.
解答:解:(1)∵AB2=20,AC2=5,BC2=25;
∴AB2+AC2=BC2,
根據(jù)勾股定理的逆定理得△ABC 為直角三角形;

(2)△ABC和△DEF相似.
由(1)中數(shù)據(jù)得AB=2
5
,AC=
5
,BC=5,
DE=4
2
,DF=2
2
,EF=2
10

AB
DE
=
AC
DF
=
BC
EF
=
5
2
2
=
10
4
,
∴△ABC∽△DEF.

(3)如圖:連接P2P5,P2P4,P4P5,
∵P2P5=
10
,P2P4=
2
,P4P5=2
2
,
AB=2
5
,AC=
5
,BC=5,
P2P5
BC
=
P4P5
AB
=
P2P4
AC
=
10
5
,
∴,△ABC∽△P2P4 P5
點(diǎn)評:此題主要考查了相似三角形的判定以及勾股定理與逆定理應(yīng)用,根據(jù)已知得出三角形各邊長度是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•菏澤)如圖,PA,PB是⊙O是切線,A,B為切點(diǎn),AC是⊙O的直徑,若∠P=46°,則∠BAC=
23
23
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•菏澤)如圖,在平面直角坐標(biāo)系中放置一直角三角板,其頂點(diǎn)為A(0,1),B(2,0),O(0,0),將此三角板繞原點(diǎn)O逆時針旋轉(zhuǎn)90°,得到△A′B′O.
(1)一拋物線經(jīng)過點(diǎn)A′、B′、B,求該拋物線的解析式;
(2)設(shè)點(diǎn)P是在第一象限內(nèi)拋物線上的一動點(diǎn),是否存在點(diǎn)P,使四邊形PB′A′B的面積是△A′B′O面積4倍?若存在,請求出P的坐標(biāo);若不存在,請說明理由.
(3)在(2)的條件下,試指出四邊形PB′A′B是哪種形狀的四邊形?并寫出四邊形PB′A′B的兩條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•菏澤)某中學(xué)舉行數(shù)學(xué)知識競賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎和紀(jì)念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖.根據(jù)圖中所給出的信息解答下列問題:

(1)二等獎所占的比例是多少?
(2)這次數(shù)學(xué)知識競賽獲得二等獎的人數(shù)是多少?
(3)請將條形統(tǒng)計圖補(bǔ)充完整;
(4)若給所有參賽學(xué)生每人發(fā)一張卡片,各自寫上自己的名字,然后把卡片放入一個不透明的袋子里,搖勻后任意摸出一張,求摸出的卡片上是寫有一等獎學(xué)生名字的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•菏澤)(1)如圖1,∠DAB=∠CAE,請補(bǔ)充一個條件:
∠D=∠B或∠AED=∠C.
∠D=∠B或∠AED=∠C.
,使△ABC∽△ADE.
(2)如圖2,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D,E兩點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案