【題目】如圖,在Rt△ABC中,∠ACB=90°,以直角邊BC為直徑作⊙O、交AB于點(diǎn)D,E為AC的中點(diǎn),連接DE
(1)求證:DE為⊙O的切線;
(2)已知BC=4.填空.
①當(dāng)DE= 時(shí),四邊形DOCE為正方形;
②當(dāng)DE= 時(shí),△BOD為等邊三角形.
【答案】(1)證明見(jiàn)解析;(2)①2;②2.
【解析】
(1)連接CD,根據(jù)圓周角定理得出∠CDB=90°,根據(jù)直角三角形性質(zhì)得出DE=CE=AE,求出∠ACD+∠DCO=∠EDC+∠CDO,求出OD⊥DE,根據(jù)切線的判定得出即可;
(2)①若四邊形DOCE為正方形,則OC=OD=DE=CE=2;
②若△BOD為等邊三角形,則∠DOE=60°,則Rt△ODE中,則DE=2.
(1)如圖,連接CD,OE,
∵BC為⊙O的直徑,
∴∠BDC=90°,
∵DE為Rt△ADC的斜邊AC上的中線,
在△COE與△DOE中,OD=CC,OE=OE,DE=CE,
∴△COE≌△DOE,
∴∠OCE=∠ODE=90°,
DE為⊙O的切線;
(2)①若四邊形DOCE為正方形,則OC=OD=DE=CE,
∵BC=4,
∴DE=2.
②若△BOD為等邊三角形,
∴∠BOD=60°,
∴∠COD=180°﹣∠BOD=120°,
∴∠DOE=60°,
∴Rt△ODE中,DE=OD.
故答案為:2,2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高速鐵路位于某省南部,是國(guó)家“八縱八橫”高速鐵路網(wǎng)的重要連接通道,也是某省“三橫五縱”高速鐵路網(wǎng)的重要組成部分.東起日照,向西貫穿臨沂、曲阜、濟(jì)寧、菏澤,與鄭徐客運(yùn)專(zhuān)線蘭考南站接軌.工程有一段在一條河邊,且剛好為東西走向.B處是一個(gè)高鐵維護(hù)站,如圖①,現(xiàn)在想過(guò)B處在河上修一座橋,需要知道河寬,一測(cè)量員在河對(duì)岸的A處測(cè)得B在它的東北方向,測(cè)量員從A點(diǎn)開(kāi)始沿岸邊向正東方向前進(jìn)300米到達(dá)點(diǎn)C處,測(cè)得B在C的北偏西30度方向上.
(1)求所測(cè)之處河的寬度;(結(jié)果保留的十分位)
(2)除(1)的測(cè)量方案外,請(qǐng)你再設(shè)計(jì)一種測(cè)量河寬的方案,并在圖②中畫(huà)出圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)在邊上,且,點(diǎn)為的中點(diǎn),點(diǎn)為邊上的動(dòng)點(diǎn),當(dāng)點(diǎn)在上移動(dòng)時(shí),使四邊形周長(zhǎng)最小的點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)部門(mén)為了解本部門(mén)工人的生產(chǎn)能力情況,進(jìn)行了抽樣調(diào)查.該部門(mén)隨機(jī)抽取了30名工人某天每人加工零件的個(gè)數(shù),數(shù)據(jù)如下:
20 | 21 | 19 | 16 | 27 | 18 | 31 | 29 | 21 | 22 |
25 | 20 | 19 | 22 | 35 | 33 | 19 | 17 | 18 | 29 |
18 | 35 | 22 | 15 | 18 | 18 | 31 | 31 | 19 | 22 |
整理上面數(shù)據(jù),得到條形統(tǒng)計(jì)圖:
樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:
統(tǒng)計(jì)量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
數(shù)值 | 23 | m | 21 |
根據(jù)以上信息,解答下列問(wèn)題:
(1)上表中眾數(shù)m的值為 ;
(2)為調(diào)動(dòng)工人的積極性,該部門(mén)根據(jù)工人每天加工零件的個(gè)數(shù)制定了獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過(guò)這個(gè)標(biāo)準(zhǔn)的工人將獲得獎(jiǎng)勵(lì).如果想讓一半左右的工人能獲獎(jiǎng),應(yīng)根據(jù) 來(lái)確定獎(jiǎng)勵(lì)標(biāo)準(zhǔn)比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)
(3)該部門(mén)規(guī)定:每天加工零件的個(gè)數(shù)達(dá)到或超過(guò)25個(gè)的工人為生產(chǎn)能手.若該部門(mén)有300名工人,試估計(jì)該部門(mén)生產(chǎn)能手的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A、C為圓心,以大于AC的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)D和E,作直線DE交AB于點(diǎn)F,交AC于點(diǎn)G,連接CF,以點(diǎn)C為圓心,以CF的長(zhǎng)為半徑畫(huà)弧,交AC于點(diǎn)H.若∠A=30°,BC=2,則AH的長(zhǎng)是( )
A. B. 2C. +1D. 2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE于點(diǎn)G,BG=4,則△EFC的周長(zhǎng)為( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,且頂點(diǎn)在直線x=上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點(diǎn)A、B、O的對(duì)應(yīng)點(diǎn)分別是D、C、E,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說(shuō)明理由;
(3)在(2)的條件下,連接BD,已知對(duì)稱(chēng)軸上存在一點(diǎn)P使得△PBD的周長(zhǎng)最小,求出P點(diǎn)的坐標(biāo);
(4)在(2)、(3)的條件下,若點(diǎn)M是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)O、B不重合),過(guò)點(diǎn)M作∥BD交x軸于點(diǎn)N,連接PM、PN,設(shè)OM的長(zhǎng)為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時(shí)M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長(zhǎng)2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過(guò)公路路面的中心線時(shí)照明效果最好,此時(shí),路燈的燈柱AB高應(yīng)該設(shè)計(jì)為多少米(結(jié)果保留根號(hào))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+6x﹣5與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左邊),與y軸交于點(diǎn)C.點(diǎn)P是拋物線上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,垂足為點(diǎn)H,交直線BC于點(diǎn)E.
(1)求點(diǎn)A,B,C的坐標(biāo);
(2)連接CP,當(dāng)CP平分∠OCB時(shí),求點(diǎn)P的坐標(biāo);
(3)平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)Q,使得以點(diǎn)P,E,B,Q為頂點(diǎn)的四邊形為菱形?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com