【題目】1)已知的平方根是,的算術(shù)平方根是4,求的值;

2)若是同一個(gè)正數(shù)的平方根,求的值.

【答案】(1)9;(2) .

【解析】

(1)根據(jù)平方根的定義列式求出a的值,再根據(jù)算術(shù)平方根的定義列式求出b的值,然后代入代數(shù)式進(jìn)行計(jì)算即可得解;

(2)利用一個(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)或這兩個(gè)數(shù)相等這兩種情況,即可求出a的值.

解:(1)2a-1的平方根是±3,

2a-1=9,∴a=5

3a+b-1的算術(shù)平方根是4

3a+b-1=16,

3×5+b-1=16,∴b=2,

a+2b=5+2×2=9;

(2)分類(lèi)討論:

①當(dāng)不相等時(shí),由一個(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)可知:

+=0

解得:

②當(dāng)相等時(shí)

=

解得

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作直線(xiàn),設(shè)的角平分線(xiàn)于點(diǎn),交的外角平分線(xiàn)于點(diǎn)

1)求證:

2)當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形是矩形?并證明你的結(jié)論.

3)當(dāng)點(diǎn)運(yùn)動(dòng)到何處,且滿(mǎn)足什么條件時(shí),四邊形是正方形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中,,上一點(diǎn),分別以,為折痕將兩個(gè)角(,)向內(nèi)折起,點(diǎn),恰好都落在邊的點(diǎn)處.若,,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中,,,

1)求證:;

2)若,,分別是,,的中點(diǎn),求證:線(xiàn)段與線(xiàn)段互相平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,矩形ABCD中,P是AB邊上的一點(diǎn)(不與A,B重合),PE平分∠APC交射線(xiàn)AD于E,過(guò)E作EM⊥PE交直線(xiàn)CP于M,交直線(xiàn)CD于N.

(1)求證:CM=CN;
(2)若AB:BC=4:3,
①當(dāng) =時(shí),E恰好是AD的中點(diǎn);
②如圖2,當(dāng)△PEM與△PBC相似時(shí),求 E N E M 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線(xiàn)段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線(xiàn)段BC向終點(diǎn)C運(yùn)動(dòng).點(diǎn)P、Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位,設(shè)運(yùn)動(dòng)時(shí)間為t秒,過(guò)點(diǎn)PPEAOAB于點(diǎn)E

1)求直線(xiàn)AB的解析式;

2)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,以B、Q、E為頂點(diǎn)的三角形是直角三角形,直按寫(xiě)出t的值;

3)設(shè)△PEQ的面積為S,求S與時(shí)間t的函數(shù)關(guān)系,并指出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題計(jì)算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ 2;
(1)計(jì)算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ 2;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線(xiàn),EAD的中點(diǎn),過(guò)點(diǎn)ABC的平行線(xiàn)與BE的延長(zhǎng)線(xiàn)相交于點(diǎn)F,連接CF

1)求證:四邊形CFAD為平行四邊形.

2)若∠BAC90°AB4,BD,請(qǐng)求出四邊形CFAD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形內(nèi)放置正方形甲、正方形乙、等腰直角三角形丙,它們的擺放位置如圖所示,已知,圖中陰影部分的面積之和為31,則矩形的周長(zhǎng)為___________

查看答案和解析>>

同步練習(xí)冊(cè)答案