【題目】如圖,在平面直角坐標(biāo)系中,已知點分別在軸、軸的正半軸上,,將繞點按順時針方向旋轉(zhuǎn)得到,使所在直線經(jīng)過點,則直線的解析式為__________

【答案】

【解析】

DE垂直于x軸,DF垂直于y軸,根據(jù)勾股定理求出BO,根據(jù)旋轉(zhuǎn)性質(zhì)和等腰三角形性質(zhì)得AB=AC,ADC=90°,BD=CD,設(shè)Dx,y),根據(jù)勾股定理得,再根據(jù)待定系數(shù)法求解.

DE垂直于x軸,DF垂直于y

RtABO中,BO=

由旋轉(zhuǎn)性質(zhì)可得AB=AC,ADC=90°

又因為所在直線經(jīng)過點,

所以BD=CD

設(shè)Dx,y

根據(jù)勾股定理可得

-②,得

-6x+8y=0

所以

把③代入①,得

解得x=0(舍去)

代入③得

所以D,

設(shè)直線的解析式為y=kx+4,

解得

所以

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科技公司研發(fā)出一款多型號的智能手表,一家代理商出售該公司的A型智能手表,去年銷售總額為8000元,今年A型智能手表的售價每只比去年降了60元,若售出的數(shù)量與去年相同,銷售總額將比去年減少25%

(1)請問今年A型智能手表每只售價多少元?

(2)今年這家代理商準(zhǔn)備新進一批A型智能手表和B型智能手表共100只,它們的進貨價與銷售價格如下表,若B型智能手表進貨量不超過A型智能手表數(shù)量的3倍,所進智能手表可全部售完,請你設(shè)計出進貨方案,使這批智能手表獲利最多,并求出最大利潤是多少元?

A型智能手表

B型智能手表

進價

130/

150/

售價

今年的售價

230/

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABDC中,AC=ABDC=DB,∠CAB=60°,∠CDB=120°.

1)連接AD,根據(jù) 易證△ACD≌△    

2)如圖2,若EAC上一點,FAB延長線上一點,且CE=BF,求證:DE=DF

3)如圖3,在(2)的條件下,若GAB上且∠EDG=60°,試猜想CEEG、BG之間的數(shù)量關(guān)系并證明所歸納結(jié)論;

4)若題中條件“∠CAB=60°且∠CDB=120°”改為“∠CAB=α,∠CDB=180°﹣α”,GAB上,∠EDG滿足什么條件時,(3)中結(jié)論仍然成立?(只寫結(jié)果不要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B∠CAD⊥BC,垂足為D,AE平分∠BAC

1)已知∠B=60°,∠C=30°,求∠DAE的度數(shù);

2)已知∠B=3∠C,求證:∠DAE=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B、E、C、F在一條直線上,AB=DF,AC=DF,BE=FC.
(1)求證:△ABC≌△DFE;
(2)連接AF、BD,求證:四邊形ABDF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校決定組織學(xué)生開展校外拓展活動,若每位老師帶17個學(xué)生,還剩12個學(xué)生沒人帶;若每位老師帶18個學(xué)生,就有一位老師少帶4個學(xué)生.現(xiàn)有甲乙兩種大客車,它們的載客量和租金如下表所示.學(xué)校計劃此次拓展活動的租車總費用不超過3100元,為了安全,每輛客車上至少要有2名老師.

客車

甲種

乙種

載客量/(人/輛)

30

42

/(元/輛)

300

400

1)參加此次拓展活動的老師有 人,參加此次拓展活動的學(xué)生有 人;

2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,可知租用客車總數(shù)為 輛.

3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.

(1)求證:BD=CE;
(2)設(shè)BD與CE相交于點O,點M,N分別為線段BO和CO的中點,當(dāng)△ABC的重心到頂點A的距離與底邊長相等時,判斷四邊形DEMN的形狀,無需說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸的負(fù)半軸交于點A,與y軸交于點B,連結(jié)AB.點C 在拋物線上,直線AC與y軸交于點D.

(1)求c的值及直線AC的函數(shù)表達式;
(2)點P在x軸的正半軸上,點Q在y軸正半軸上,連結(jié)PQ與直線AC交于點M,連結(jié)MO并延長交AB于點N,若M為PQ的中點.
①求證:△APM∽△AON;
②設(shè)點M的橫坐標(biāo)為m , 求AN的長(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

32(1)2;

52()2;

72()2;…

1)請你根據(jù)以上規(guī)律,寫出第6個等式

2)第n個等式可以表示為 ,并請你證明你得到的等式.

查看答案和解析>>

同步練習(xí)冊答案